Besson Valerie C
Equipe de Recherche 'Pharmacologie de la Circulation Cérébrale' (EA 2510), Faculté des Sciences Pharmaceutiques et Biologiques, Université Paris Descartes, Paris, France.
Br J Pharmacol. 2009 Jul;157(5):695-704. doi: 10.1111/j.1476-5381.2009.00229.x. Epub 2009 Apr 9.
The deleterious pathophysiological cascade induced after traumatic brain injury (TBI) is initiated by an excitotoxic process triggered by excessive glutamate release. Activation of the glutamatergic N-methyl-D-aspartate receptor, by increasing calcium influx, activates nitric oxide (NO) synthases leading to a toxic production of NO. Moreover, after TBI, free radicals are highly produced and participate to a deleterious oxidative stress. Evidence has showed that the major toxic effect of NO comes from its combination with superoxide anion leading to peroxynitrite formation, a highly reactive and oxidant compound. Indeed, peroxynitrite mediates nitrosative stress and is a potent inducer of cell death through its reaction with lipids, proteins and DNA. Particularly DNA damage, caused by both oxidative and nitrosative stresses, results in activation of poly(ADP-ribose) polymerase (PARP), a nuclear enzyme implicated in DNA repair. In response to excessive DNA damage, massive PARP activation leads to energetic depletion and finally to cell death. Since 10 years, accumulating data have showed that inactivation of PARP, either pharmacologically or using PARP null mice, induces neuroprotection in experimental models of TBI. Thus TBI generating NO, oxidative and nitrosative stresses promotes PARP activation contributing in post-traumatic motor, cognitive and histological sequelae. The mechanisms by which PARP inhibitors provide protection might not entirely be related to the preservation of cellular energy stores, but might also include other PARP-mediated mechanisms that needed to be explored in a TBI context. Ten years of experimental research provided rational basis for the development of PARP inhibitors as treatment for TBI.
创伤性脑损伤(TBI)后引发的有害病理生理级联反应是由过量谷氨酸释放触发的兴奋性毒性过程所启动的。谷氨酸能N-甲基-D-天冬氨酸受体的激活,通过增加钙内流,激活一氧化氮(NO)合酶,导致NO的毒性产生。此外,TBI后,自由基大量产生并参与有害的氧化应激。有证据表明,NO的主要毒性作用来自其与超氧阴离子的结合,导致过氧亚硝酸盐的形成,这是一种高反应性的氧化化合物。事实上,过氧亚硝酸盐介导亚硝化应激,并且通过与脂质、蛋白质和DNA反应,是细胞死亡的有效诱导剂。特别是由氧化应激和亚硝化应激引起的DNA损伤,会导致聚(ADP-核糖)聚合酶(PARP)的激活,PARP是一种参与DNA修复的核酶。针对过量的DNA损伤,大量的PARP激活会导致能量耗竭并最终导致细胞死亡。十年来,越来越多的数据表明,无论是通过药理学方法还是使用PARP基因敲除小鼠使PARP失活,都能在TBI实验模型中诱导神经保护作用。因此,TBI产生的NO、氧化应激和亚硝化应激会促进PARP激活,从而导致创伤后运动、认知和组织学后遗症。PARP抑制剂提供保护的机制可能并不完全与细胞能量储备的保存有关,还可能包括其他需要在TBI背景下探索的PARP介导的机制。十年的实验研究为开发PARP抑制剂作为TBI的治疗方法提供了合理依据。