Zibell Guido, Unkrüer Bernadette, Pekcec Anton, Hartz Anika M S, Bauer Björn, Miller David S, Potschka Heidrun
Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig-Maximilians-University, Koeniginstr. 16, D-80539 Munich, Germany.
Neuropharmacology. 2009 Apr;56(5):849-55. doi: 10.1016/j.neuropharm.2009.01.009. Epub 2009 Jan 21.
In the epileptic brain, seizure activity induces expression of the blood-brain barrier efflux transporter, P-glycoprotein, thereby limiting brain penetration and therapeutic efficacy of antiepileptic drugs. We recently provided the first evidence that seizures drive P-glycoprotein induction through a pathway that involves glutamate-signaling through the NMDA receptor and cyclooxygenase-2 (COX-2). Based on these data, we hypothesized that selective inhibition of COX-2 could prevent seizure-induced P-glycoprotein up-regulation. In the present study, we found that the highly selective COX-2 inhibitors, NS-398 and indomethacin heptyl ester, blocked the glutamate-induced increase in P-glycoprotein expression and transport function in isolated rat brain capillaries. Importantly, consistent with this, the COX-2 inhibitor, celecoxib, blocked seizure-induced up-regulation of P-glycoprotein expression in brain capillaries of rats in vivo. To explore further the role of COX-2 in signaling P-glycoprotein induction, we analyzed COX-2 protein expression in capillary endothelial cells in brain sections from rats that had undergone pilocarpine-induced seizures and in isolated capillaries exposed to glutamate and found no change from control levels. However, in isolated rat brain capillaries, the COX-2 substrate, arachidonic acid, significantly increased P-glycoprotein transport activity and expression indicating that enhanced substrate flux to COX-2 rather than increased COX-2 expression drives P-glycoprotein up-regulation. Together, these results provide the first in vivo proof-of-principle that specific COX-2 inhibition may be used as a new therapeutic strategy to prevent seizure-induced P-glycoprotein up-regulation at the blood-brain barrier for improving pharmacotherapy of drug-resistant epilepsy.
在癫痫大脑中,癫痫发作活动会诱导血脑屏障外排转运蛋白P-糖蛋白的表达,从而限制抗癫痫药物的脑内渗透和治疗效果。我们最近首次证明,癫痫发作通过一条涉及通过N-甲基-D-天冬氨酸受体和环氧合酶-2(COX-2)的谷氨酸信号传导途径驱动P-糖蛋白的诱导。基于这些数据,我们推测选择性抑制COX-2可以预防癫痫发作诱导的P-糖蛋白上调。在本研究中,我们发现高选择性COX-2抑制剂NS-398和吲哚美辛庚酯可阻断谷氨酸诱导的离体大鼠脑毛细血管中P-糖蛋白表达和转运功能的增加。重要的是,与此一致的是,COX-2抑制剂塞来昔布可阻断体内大鼠脑毛细血管中癫痫发作诱导的P-糖蛋白表达上调。为了进一步探究COX-2在P-糖蛋白诱导信号传导中的作用,我们分析了匹鲁卡品诱导癫痫发作的大鼠脑切片中毛细血管内皮细胞以及暴露于谷氨酸的离体毛细血管中COX-2蛋白的表达,发现其与对照水平无变化。然而,在离体大鼠脑毛细血管中,COX-2底物花生四烯酸显著增加了P-糖蛋白的转运活性和表达,表明向COX-2的底物通量增加而非COX-2表达增加驱动了P-糖蛋白上调。总之,这些结果首次提供了体内原理证明,即特异性COX-2抑制可作为一种新的治疗策略,用于预防血脑屏障处癫痫发作诱导的P-糖蛋白上调,以改善耐药性癫痫的药物治疗。