Suppr超能文献

理想玻色气体中的粒子数计数统计

Particle number counting statistics in ideal Bose gases.

作者信息

Weiss C, Wilkens M

出版信息

Opt Express. 1997 Nov 10;1(10):272-83. doi: 10.1364/oe.1.000272.

Abstract

We discuss the exact particle number counting statistics of degenerate ideal Bose gases in the microcanonical, canonical, and grand-canonical ensemble, respectively, for various trapping potentials. We then invoke the Maxwell's Demon ensemble [Navez et el., Phys. Rev. Lett. (1997)] and show that for large total number of particles the root-mean-square fluctuation of the condensate occupation scales n0 / [T=Tc] r N s with scaling exponents r = 3=2, s = 1=2 for the3D harmonic oscillator trapping potential, and r = 1,s= 2=3 for the 3D box. We derive an explicit expression for r and s in terms of spatial dimension D and spectral index sigma of the single-particle energy spectrum. Our predictions also apply to systems where Bose-Einstein condensation does not occur. We point out that the condensate fluctuations in the microcanonical and canonical ensemble respect the principle of thermodynamic equivalence.

摘要

我们分别讨论了在微正则系综、正则系综和巨正则系综中,简并理想玻色气体在各种捕获势下的精确粒子数统计。然后我们引入了麦克斯韦妖系综[Navez等人,《物理评论快报》(1997年)],并表明,对于大量粒子,凝聚态占据数的均方根涨落按(n_0 / [T=T_c] \sim N^r)缩放,对于三维谐振子捕获势,缩放指数(r = 3/2),(s = 1/2);对于三维盒子,(r = 1),(s = 2/3)。我们根据空间维度(D)和单粒子能谱的谱指数(\sigma),推导出了(r)和(s)的显式表达式。我们的预测也适用于不发生玻色 - 爱因斯坦凝聚的系统。我们指出,微正则系综和正则系综中的凝聚态涨落符合热力学等效原理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验