Crisanti Andrea, Salasnich Luca, Sarracino Alessandro, Zannetti Marco
Dipartimento di Fisica, Università di Roma "La Sapienza", Piazzale Moro 5, 00185 Roma, Italy.
Dipartimento di Fisica e Astronomia "Galileo Galilei" and Padua QTech Center, Università di Padova, Via Marzolo 8, 35131 Padova, Italy.
Entropy (Basel). 2024 Apr 26;26(5):367. doi: 10.3390/e26050367.
We analyze the general relation between canonical and grand canonical ensembles in the thermodynamic limit. We begin our discussion by deriving, with an alternative approach, some standard results first obtained by Kac and coworkers in the late 1970s. Then, motivated by the Bose-Einstein condensation (BEC) of trapped gases with a fixed number of atoms, which is well described by the canonical ensemble and by the recent groundbreaking experimental realization of BEC with photons in a dye-filled optical microcavity under genuine grand canonical conditions, we apply our formalism to a system of non-interacting Bose particles confined in a two-dimensional harmonic trap. We discuss in detail the mathematical origin of the inequivalence of ensembles observed in the condensed phase, giving place to the so-called grand canonical catastrophe of density fluctuations. We also provide explicit analytical expressions for the internal energy and specific heat and compare them with available experimental data. For these quantities, we show the equivalence of ensembles in the thermodynamic limit.
我们分析了热力学极限下正则系综与巨正则系综之间的一般关系。我们首先采用一种替代方法推导一些标准结果,这些结果最初是由卡克及其同事在20世纪70年代末得到的,以此开始我们的讨论。然后,受具有固定原子数的捕获气体的玻色 - 爱因斯坦凝聚(BEC)的启发,正则系综能很好地描述这种凝聚,并且最近在真正的巨正则条件下,在充满染料的光学微腔中用光子实现了具有开创性的BEC实验,我们将我们的形式体系应用于限制在二维谐振子势阱中的非相互作用玻色粒子系统。我们详细讨论了在凝聚相中观察到的系综不等价性的数学起源,这导致了所谓的密度涨落的巨正则灾难。我们还给出了内能和比热的显式解析表达式,并将它们与现有的实验数据进行比较。对于这些量,我们展示了在热力学极限下系综的等价性。