Dodd R, Clark C, Edwards M, Burnett K
Opt Express. 1997 Nov 10;1(10):284-92. doi: 10.1364/oe.1.000284.
For a dilute, interacting Bose gas of magnetically-trapped atoms at temperatures below the critical temperature T0 for Bose-Einstein condensation, we determine the second-order coherence function g (2) (r1 ; r2) within the framework of a finite-temperature quantum field theory. We show that, because of the different spatial distributions of condensate and thermal atoms in the trap, g (2) (r1 ; r2) does not depend on jr1 r2j alone. This means that the experimental determinations of g (2) reported to date give only its spatial average. Such an average may underestimate the degree of coherence attainable in an atom laser by judicious engineering of the output coupler.
对于处于低于玻色-爱因斯坦凝聚临界温度(T_0)的磁阱中稀薄、相互作用的玻色气体原子,我们在有限温度量子场论框架内确定二阶相干函数(g^{(2)}(\mathbf{r}_1;\mathbf{r}_2))。我们表明,由于凝聚态原子和热原子在阱中的空间分布不同,(g^{(2)}(\mathbf{r}_1;\mathbf{r}_2))并不仅取决于(|\mathbf{r}_1 - \mathbf{r}_2|)。这意味着迄今为止报道的(g^{(2)})的实验测定值仅给出了其空间平均值。通过对输出耦合器进行明智的设计,这样的平均值可能会低估原子激光器中可达到的相干程度。