Institute of Quantum Optics, QUEST-Leibniz Research School, Leibniz University Hannover, Hanover, Germany.
OHB System AG, Weßling, Germany.
Nature. 2018 Oct;562(7727):391-395. doi: 10.1038/s41586-018-0605-1. Epub 2018 Oct 17.
Owing to the low-gravity conditions in space, space-borne laboratories enable experiments with extended free-fall times. Because Bose-Einstein condensates have an extremely low expansion energy, space-borne atom interferometers based on Bose-Einstein condensation have the potential to have much greater sensitivity to inertial forces than do similar ground-based interferometers. On 23 January 2017, as part of the sounding-rocket mission MAIUS-1, we created Bose-Einstein condensates in space and conducted 110 experiments central to matter-wave interferometry, including laser cooling and trapping of atoms in the presence of the large accelerations experienced during launch. Here we report on experiments conducted during the six minutes of in-space flight in which we studied the phase transition from a thermal ensemble to a Bose-Einstein condensate and the collective dynamics of the resulting condensate. Our results provide insights into conducting cold-atom experiments in space, such as precision interferometry, and pave the way to miniaturizing cold-atom and photon-based quantum information concepts for satellite-based implementation. In addition, space-borne Bose-Einstein condensation opens up the possibility of quantum gas experiments in low-gravity conditions.
由于太空中的低重力条件,天基实验室能够进行扩展的自由落体时间实验。由于玻色-爱因斯坦凝聚体具有极低的膨胀能量,因此基于玻色-爱因斯坦凝聚的天基原子干涉仪有可能比类似的地面干涉仪对惯性力具有更高的灵敏度。2017 年 1 月 23 日,作为 sounding-rocket 任务 MAIUS-1 的一部分,我们在太空中创建了玻色-爱因斯坦凝聚体,并进行了 110 项对物质波干涉测量至关重要的实验,包括在发射过程中经历的大加速度下的原子激光冷却和捕获。在这里,我们报告了在太空中进行的六分钟飞行实验中进行的实验,在这些实验中,我们研究了从热集合体到玻色-爱因斯坦凝聚体的相变以及由此产生的凝聚体的集体动力学。我们的结果为在太空中进行冷原子实验提供了深入了解,例如精密干涉测量,并为基于卫星的小型化冷原子和光子量子信息概念铺平了道路。此外,天基玻色-爱因斯坦凝聚体为在低重力条件下进行量子气体实验开辟了可能性。