Suppr超能文献

直觉模糊集与模糊集在医学模式识别中的应用

Intuitionistic fuzzy set vs. fuzzy set application in medical pattern recognition.

作者信息

Khatibi Vahid, Montazer Gholam Ali

机构信息

Information Technology Department, School of Engineering, Tarbiat Modares University, Tehran, Iran.

出版信息

Artif Intell Med. 2009 Sep;47(1):43-52. doi: 10.1016/j.artmed.2009.03.002. Epub 2009 Apr 17.

Abstract

OBJECTIVE

One of the toughest challenges in medical diagnosis is uncertainty handling. The detection of intestinal bacteria such as Salmonella and Shigella which cause typhoid fever and dysentery, respectively, is one such challenging problem for microbiologists. They detect the bacteria by the comparison with predefined classes to find the most similar one. Consequently, we observe uncertainty in determining the similarity degrees, and therefore, in the bacteria classification. In this paper, we take an intelligent approach towards the bacteria classification problem by using five similarity measures of fuzzy sets (FSs) and intuitionistic fuzzy sets (IFSs) to examine their capabilities in encountering uncertainty in the medical pattern recognition.

METHODS

FSs and IFSs are two strong frameworks for uncertainty handling. The membership degree in FSs and both membership and non-membership degrees in IFSs are the operators that these frameworks use to represent the degree of which a member of the universe of discourse belongs to a subset of it. In this paper, the similarity measures, which both frameworks provide are used, so as the intestinal bacteria are detected and classified through uncertainty quantification in feature vectors. Also, the experimental results of using the measures are illustrated and compared.

RESULTS

We obtained 263 unknown bacteria from microbiology section of Resalat laboratory in Tehran to examine the similarity measures in practice. Finally, the detection rates of the measures were calculated between which IFS Hausdorf and Mitchel similarity measures scored the best results with 95.27% and 94.48% detection rates, respectively. On the other hand, FS Euclidean distance yielded only 85% detection rate.

CONCLUSIONS

Our investigation shows that both frameworks have powerful capabilities to cope with the uncertainty in the medical pattern recognition problems. But, IFSs yield better detection rate as a result of more accurate modeling which is involved with incurring more computational cost. Our research also shows that among different IFS similarity measures, IFS Hausdorf and Mitchel ones score the best results.

摘要

目的

医学诊断中最棘手的挑战之一是不确定性处理。分别导致伤寒和痢疾的沙门氏菌和志贺氏菌等肠道细菌的检测,对微生物学家来说是一个具有挑战性的问题。他们通过与预定义类别进行比较来检测细菌,以找到最相似的类别。因此,我们在确定相似度时观察到不确定性,进而在细菌分类中也存在不确定性。在本文中,我们采用智能方法处理细菌分类问题,使用模糊集(FSs)和直觉模糊集(IFSs)的五种相似性度量来检验它们在医学模式识别中应对不确定性的能力。

方法

FSs和IFSs是处理不确定性的两个强大框架。FSs中的隶属度以及IFSs中的隶属度和非隶属度是这些框架用于表示论域中的一个成员属于其某个子集的程度的算子。本文使用了这两个框架提供的相似性度量,以便通过对特征向量进行不确定性量化来检测和分类肠道细菌。此外,还展示并比较了使用这些度量的实验结果。

结果

我们从德黑兰Resalat实验室的微生物学部门获取了263种未知细菌,以实际检验相似性度量。最后,计算了这些度量的检测率,其中IFS豪斯多夫和米切尔相似性度量的检测率最佳,分别为95.27%和94.48%。另一方面,FS欧几里得距离的检测率仅为85%。

结论

我们的研究表明,这两个框架在应对医学模式识别问题中的不确定性方面都具有强大的能力。但是,由于IFSs涉及更精确的建模,会产生更高的计算成本,因此其检测率更高。我们的研究还表明,在不同的IFS相似性度量中,IFS豪斯多夫和米切尔度量的结果最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验