Lefèvre Christopher T, Song Tao, Yonnet Jean-Paul, Wu Long-Fei
Université de la Méditerranée, Institut de Microbiologie de la Méditerranée, CNRS, Marseille, France.
Appl Environ Microbiol. 2009 Jun;75(12):3835-41. doi: 10.1128/AEM.00165-09. Epub 2009 Apr 17.
Magnetotactic bacteria have the unique capacity of synthesizing intracellular single-domain magnetic particles called magnetosomes. The magnetosomes are usually organized in a chain that allows the bacteria to align and swim along geomagnetic field lines, a behavior called magnetotaxis. Two mechanisms of magnetotaxis have been described. Axial magnetotactic cells swim in both directions along magnetic field lines. In contrast, polar magnetotactic cells swim either parallel to the geomagnetic field lines toward the North Pole (north seeking) or antiparallel toward the South Pole (south seeking). In this study, we used a magnetospectrophotometry (MSP) assay to characterize both the axial magnetotaxis of "Magnetospirillum magneticum" strain AMB-1 and the polar magnetotaxis of magneto-ovoid strain MO-1. Two pairs of Helmholtz coils were mounted onto the cuvette holder of a common laboratory spectrophotometer to generate two mutually perpendicular homogeneous magnetic fields parallel or perpendicular to the light beam. The application of magnetic fields allowed measurements of the change in light scattering resulting from cell alignment in a magnetic field or in absorbance due to bacteria swimming across the light beam. Our results showed that MSP is a powerful tool for the determination of bacterial magnetism and the analysis of alignment and swimming of magnetotactic bacteria in magnetic fields. Moreover, this assay allowed us to characterize south-seeking derivatives and non-magnetosome-bearing strains obtained from north-seeking MO-1 cultures. Our results suggest that oxygen is a determinant factor that controls magnetotactic behavior.
趋磁细菌具有合成称为磁小体的细胞内单畴磁性颗粒的独特能力。磁小体通常排列成链,使细菌能够沿着地磁场线排列并游动,这种行为称为趋磁作用。趋磁作用的两种机制已被描述。轴向趋磁细胞沿磁场线在两个方向游动。相比之下,极性趋磁细胞要么平行于地磁场线向北极游动(向北寻找),要么反平行于地磁场线向南极游动(向南寻找)。在本研究中,我们使用磁分光光度法(MSP)测定法来表征“趋磁螺菌”AMB-1菌株的轴向趋磁作用和磁卵形MO-1菌株的极性趋磁作用。将两对亥姆霍兹线圈安装在普通实验室分光光度计的比色皿支架上,以产生与光束平行或垂直的两个相互垂直的均匀磁场。施加磁场可以测量由于细胞在磁场中排列导致的光散射变化或由于细菌游过光束导致的吸光度变化。我们的结果表明,MSP是测定细菌磁性以及分析趋磁细菌在磁场中排列和游动的有力工具。此外,该测定法使我们能够表征从向北寻找的MO-1培养物中获得的向南寻找的衍生物和不含磁小体的菌株。我们的结果表明,氧气是控制趋磁行为的决定性因素。
Appl Environ Microbiol. 2009-6
J Biochem Biophys Methods. 2007-4-10
Appl Microbiol Biotechnol. 2010-12-7
Appl Environ Microbiol. 2016-8-30
Integr Biol (Camb). 2014-7-24
Eur Biophys J. 2024-2
Environ Microbiol Rep. 2013-9-16
Front Bioeng Biotechnol. 2022-4-25
Sci Rep. 2020-8-11
Appl Environ Microbiol. 2020-7-2
Front Microbiol. 2018-7-17
PLoS One. 2014-7-1
Integr Biol (Camb). 2014-7-24
Environ Microbiol. 2009-2-12
FEMS Microbiol Rev. 2008-7
J Biochem Biophys Methods. 2007-4-10
Science. 2006-1-20
Nat Rev Microbiol. 2004-3
Proc Natl Acad Sci U S A. 2004-3-16
Int Microbiol. 2002-12
Biophys J. 1997-8