Suppr超能文献

淡水细菌游泳鞘氨醇单胞菌的共聚集改变了双物种生物膜的形成。

Coaggregation by the freshwater bacterium Sphingomonas natatoria alters dual-species biofilm formation.

作者信息

Min K R, Rickard A H

机构信息

Department of Biological Sciences, Binghamton University, NY 13902, USA.

出版信息

Appl Environ Microbiol. 2009 Jun;75(12):3987-97. doi: 10.1128/AEM.02843-08. Epub 2009 Apr 17.

Abstract

Coaggregation is hypothesized to enhance freshwater biofilm development. To investigate this hypothesis, the ability of the coaggregating bacterium Sphingomonas natatoria to form single- and dual-species biofilms was studied and compared to that of a naturally occurring spontaneous coaggregation-deficient variant. Attachment assays using metabolically inactive cells were performed using epifluorescence and confocal laser scanning microscopy. Under static and flowing conditions, coaggregating S. natatoria 2.1gfp cells adhered to glass surfaces to form diaphanous single-species biofilms. When glass surfaces were precoated with coaggregation partner Micrococcus luteus 2.13 cells, S. natatoria 2.1gfp cells formed densely packed dual-species biofilms. The addition of 80 mM galactosamine, which reverses coaggregation, mildly reduced adhesion to glass but inhibited the interaction and attachment to glass-surface-attached M. luteus 2.13 cells. As opposed to wild-type coaggregating cells, coaggregation-deficient S. natatoria 2.1COGgfp variant cells were retarded in colonizing glass and did not interact with glass-surface-attached M. luteus 2.13 cells. To determine if coaggregation enhances biofilm growth and expansion, viable coaggregating S. natatoria 2.1gfp cells or the coaggregation-deficient variant S. natatoria 2.1COGgfp cells were coinoculated in flow cells with viable M. luteus 2.13 cells and allowed to grow together for 96 h. Coaggregating S. natatoria 2.1gfp cells outcompeted M. luteus 2.13 cells, and 96-h biofilms were composed predominantly of S. natatoria 2.1gfp cells. Conversely, when coaggregation-deficient S. natatoria 2.1COGgfp cells were coinoculated with M. luteus 2.13 cells, the 96-h biofilm contained few coaggregation-deficient S. natatoria 2.1 cells. Thus, coaggregation promotes biofilm integration by facilitating attachment to partner species and likely contributes to the expansion of coaggregating S. natatoria 2.1 populations in dual-species biofilms through competitive interactions.

摘要

据推测,共聚集作用可促进淡水生物膜的形成。为了验证这一假设,研究了共聚集细菌游泳鞘氨醇单胞菌形成单物种和双物种生物膜的能力,并将其与天然存在的自发共聚集缺陷变体进行了比较。使用代谢不活跃的细胞进行附着试验,采用落射荧光显微镜和共聚焦激光扫描显微镜。在静态和流动条件下,共聚集的游泳鞘氨醇单胞菌2.1gfp细胞附着在玻璃表面,形成透明的单物种生物膜。当玻璃表面预先包被有共聚集伙伴藤黄微球菌2.13细胞时,游泳鞘氨醇单胞菌2.1gfp细胞形成密集堆积的双物种生物膜。添加80 mM半乳糖胺可逆转共聚集作用,轻微降低对玻璃的附着力,但抑制与玻璃表面附着的藤黄微球菌2.13细胞的相互作用和附着。与野生型共聚集细胞不同,共聚集缺陷的游泳鞘氨醇单胞菌2.1COGgfp变体细胞在定殖于玻璃时受到阻碍,并且不与玻璃表面附着的藤黄微球菌2.13细胞相互作用。为了确定共聚集是否增强生物膜的生长和扩展,将有活力的共聚集游泳鞘氨醇单胞菌2.1gfp细胞或共聚集缺陷变体游泳鞘氨醇单胞菌2.1COGgfp细胞与有活力的藤黄微球菌2.13细胞一起接种到流动池中,共同培养96小时。共聚集的游泳鞘氨醇单胞菌2.1gfp细胞胜过藤黄微球菌2.13细胞,96小时的生物膜主要由游泳鞘氨醇单胞菌2.1gfp细胞组成。相反,当共聚集缺陷的游泳鞘氨醇单胞菌2.1COGgfp细胞与藤黄微球菌2.13细胞一起接种时,96小时的生物膜中几乎没有共聚集缺陷的游泳鞘氨醇单胞菌2.1细胞。因此,共聚集通过促进与伙伴物种的附着来促进生物膜整合,并可能通过竞争相互作用有助于双物种生物膜中共聚集的游泳鞘氨醇单胞菌2.1种群的扩展。

相似文献

1
Coaggregation by the freshwater bacterium Sphingomonas natatoria alters dual-species biofilm formation.
Appl Environ Microbiol. 2009 Jun;75(12):3987-97. doi: 10.1128/AEM.02843-08. Epub 2009 Apr 17.
3
Influence of growth environment on coaggregation between freshwater biofilm bacteria.
J Appl Microbiol. 2004;96(6):1367-73. doi: 10.1111/j.1365-2672.2004.02297.x.
4
A novel microplate-based spectrophotometric method for the quantitative assessment of freshwater bacterial coaggregation kinetics.
Biofouling. 2023 Mar;39(3):303-315. doi: 10.1080/08927014.2023.2212596. Epub 2023 May 25.
5
Coaggregation occurs amongst bacteria within and between biofilms in domestic showerheads.
Biofouling. 2013;29(1):53-68. doi: 10.1080/08927014.2012.744395.
6
Coaggregation between aquatic bacteria is mediated by specific-growth-phase-dependent lectin-saccharide interactions.
Appl Environ Microbiol. 2000 Jan;66(1):431-4. doi: 10.1128/AEM.66.1.431-434.2000.
7
Shear rate moderates community diversity in freshwater biofilms.
Appl Environ Microbiol. 2004 Dec;70(12):7426-35. doi: 10.1128/AEM.70.12.7426-7435.2004.
8
Mini-review: Microbial coaggregation: ubiquity and implications for biofilm development.
Biofouling. 2014;30(10):1235-51. doi: 10.1080/08927014.2014.976206.
9
Bacterial coaggregation in aquatic systems.
Water Res. 2021 May 15;196:117037. doi: 10.1016/j.watres.2021.117037. Epub 2021 Mar 10.
10
Elucidating bacterial coaggregation through a physicochemical and imaging surface characterization.
Sci Total Environ. 2024 Oct 20;948:174872. doi: 10.1016/j.scitotenv.2024.174872. Epub 2024 Jul 20.

引用本文的文献

1
Quorum sensing and antibiotic resistance in polymicrobial infections.
Commun Integr Biol. 2024 Oct 17;17(1):2415598. doi: 10.1080/19420889.2024.2415598. eCollection 2024.
3
What Glues the Glue to the Cell Surface?
J Bacteriol. 2022 Nov 15;204(11):e0038622. doi: 10.1128/jb.00386-22. Epub 2022 Oct 26.
4
Epinephrine affects gene expression levels and has a complex effect on biofilm formation in strain C01 isolated from human skin.
Biofilm. 2021 Oct 21;3:100058. doi: 10.1016/j.bioflm.2021.100058. eCollection 2021 Dec.
5
Role of Cell Surface Structures in Colonization of the Air-Liquid Interface.
J Bacteriol. 2019 Aug 22;201(18). doi: 10.1128/JB.00064-19. Print 2019 Sep 15.
6
Isolation and characterization of from fouled membranes.
NPJ Biofilms Microbiomes. 2019 Jan 25;5(1):6. doi: 10.1038/s41522-018-0074-1. eCollection 2019.
7
Highly efficient phenol degradation in a batch moving bed biofilm reactor: benefiting from biofilm-enhancing bacteria.
World J Microbiol Biotechnol. 2018 Oct 28;34(11):164. doi: 10.1007/s11274-018-2543-3.
8
Microbial Interaction as a Determinant of the Quality of Supply Drinking Water: A Conceptual Analysis.
Front Public Health. 2018 Jun 26;6:184. doi: 10.3389/fpubh.2018.00184. eCollection 2018.
10
Microbial Surface Colonization and Biofilm Development in Marine Environments.
Microbiol Mol Biol Rev. 2015 Dec 23;80(1):91-138. doi: 10.1128/MMBR.00037-15. Print 2016 Mar.

本文引用的文献

1
Molecular characteristics of xenobiotic-degrading sphingomonads.
Appl Microbiol Biotechnol. 2009 Jan;81(5):793-811. doi: 10.1007/s00253-008-1752-3. Epub 2008 Nov 11.
2
Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease.
Annu Rev Biomed Eng. 2008;10:145-67. doi: 10.1146/annurev.bioeng.10.061807.160536.
3
Coaggregation between and among human intestinal and oral bacteria.
FEMS Microbiol Ecol. 2008 Dec;66(3):630-6. doi: 10.1111/j.1574-6941.2008.00525.x. Epub 2008 Jun 12.
4
Type IV pili: e pluribus unum?
Mol Microbiol. 2008 May;68(4):827-37. doi: 10.1111/j.1365-2958.2008.06197.x. Epub 2008 Apr 8.
5
Type IV pili: paradoxes in form and function.
Curr Opin Struct Biol. 2008 Apr;18(2):267-77. doi: 10.1016/j.sbi.2007.12.009. Epub 2008 Feb 4.
6
Intergeneric coaggregation among drinking water bacteria: evidence of a role for Acinetobacter calcoaceticus as a bridging bacterium.
Appl Environ Microbiol. 2008 Feb;74(4):1259-63. doi: 10.1128/AEM.01747-07. Epub 2007 Dec 21.
8
Marine biofilms as mediators of colonization by marine macroorganisms: implications for antifouling and aquaculture.
Mar Biotechnol (NY). 2007 Jul-Aug;9(4):399-410. doi: 10.1007/s10126-007-9001-9. Epub 2007 May 12.
10
Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients.
Curr Opin Pediatr. 2007 Feb;19(1):83-8. doi: 10.1097/MOP.0b013e3280123a5d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验