Paravastu Anant K, Qahwash Isam, Leapman Richard D, Meredith Stephen C, Tycko Robert
Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7443-8. doi: 10.1073/pnas.0812033106. Epub 2009 Apr 17.
Studies by solid-state nuclear magnetic resonance (NMR) of amyloid fibrils prepared in vitro from synthetic 40-residue beta-amyloid (Abeta(1-40)) peptides have shown that the molecular structure of Abeta(1-40) fibrils is not uniquely determined by amino acid sequence. Instead, the fibril structure depends on the precise details of growth conditions. The molecular structures of beta-amyloid fibrils that develop in Alzheimer's disease (AD) are therefore uncertain. We demonstrate through thioflavin T fluorescence and electron microscopy that fibrils extracted from brain tissue of deceased AD patients can be used to seed the growth of synthetic Abeta(1-40) fibrils, allowing preparation of fibrils with isotopic labeling and in sufficient quantities for solid-state NMR and other measurements. Because amyloid structures propagate themselves in seeded growth, as shown in previous studies, the molecular structures of brain-seeded synthetic Abeta(1-40) fibrils most likely reflect structures that are present in AD brain. Solid-state (13)C NMR spectra of fibril samples seeded with brain material from two AD patients were found to be nearly identical, indicating the same molecular structures. Spectra of an unseeded control sample indicate greater structural heterogeneity. (13)C chemical shifts and other NMR data indicate that the predominant molecular structure in brain-seeded fibrils differs from the structures of purely synthetic Abeta(1-40) fibrils that have been characterized in detail previously. These results demonstrate a new approach to detailed structural characterization of amyloid fibrils that develop in human tissue, and to investigations of possible correlations between fibril structure and the degree of cognitive impairment and neurodegeneration in AD.
通过固态核磁共振(NMR)对由合成的40个残基的β-淀粉样蛋白(Abeta(1 - 40))肽体外制备的淀粉样纤维进行的研究表明,Abeta(1 - 40)纤维的分子结构并非由氨基酸序列唯一确定。相反,纤维结构取决于生长条件的精确细节。因此,在阿尔茨海默病(AD)中形成的β-淀粉样纤维的分子结构尚不确定。我们通过硫黄素T荧光和电子显微镜证明,从已故AD患者脑组织中提取的纤维可用于引发合成Abeta(1 - 40)纤维的生长,从而能够制备出带有同位素标记且数量足以用于固态NMR和其他测量的纤维。正如先前研究所表明的,由于淀粉样结构在种子生长中会自我传播,因此脑源性合成Abeta(1 - 40)纤维的分子结构很可能反映了AD脑中存在的结构。发现用两名AD患者的脑材料作为种子的纤维样品的固态(13)C NMR光谱几乎相同,表明分子结构相同。未接种种子的对照样品的光谱显示出更大的结构异质性。(13)C化学位移和其他NMR数据表明,脑源性纤维中的主要分子结构与先前已详细表征的纯合成Abeta(1 - 40)纤维的结构不同。这些结果证明了一种新方法,可用于详细表征在人体组织中形成的淀粉样纤维的结构,并用于研究纤维结构与AD中认知障碍程度和神经退行性变之间可能的相关性。