Suppr超能文献

使用随机生成的肽库进行表位作图。

Epitope mapping using randomly generated peptide libraries.

作者信息

Bongartz Juliane, Bruni Nicole, Or-Guil Michal

机构信息

Systems Immunology Group, Institute for Theoretical Biology, Humboldt University Berlin, Invalidenstr., 43, 10115 Berlin, Germany.

出版信息

Methods Mol Biol. 2009;524:237-46. doi: 10.1007/978-1-59745-450-6_17.

Abstract

Characterizing the immune response towards a pathogen is of high interest for vaccine development and diagnosis. However, the characterization of disease-related antigen-antibody interactions is of enormous complexity. Here, we present a method comprising binding studies of serum antibody pools to synthetic random peptide libraries, and data analysis of the resulting binding patterns. The analysis can be applied to classify and predict different groups of individuals and to detect the peptides which best discriminate the investigated groups. As an example, the analysis of antibody repertoire binding patterns of different mice strains and of mice infected with helminth parasites is shown. Due to the design of the library and the sophisticated analysis, the method is able to classify and predict the different mice strains and the infection with very high accuracy and with a very small number of peptides, illustrating the potential of random library screenings in determining molecular markers for diagnosis.

摘要

了解针对病原体的免疫反应对于疫苗开发和诊断具有重要意义。然而,疾病相关抗原 - 抗体相互作用的表征极为复杂。在此,我们提出一种方法,该方法包括血清抗体库与合成随机肽库的结合研究以及对所得结合模式的数据分析。该分析可用于对不同个体群体进行分类和预测,并检测最能区分所研究群体的肽段。例如,展示了对不同小鼠品系以及感染蠕虫寄生虫的小鼠的抗体库结合模式的分析。由于文库的设计和精密的分析,该方法能够以非常高的准确性和极少量的肽段对不同小鼠品系和感染情况进行分类和预测,说明了随机文库筛选在确定诊断分子标志物方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验