Suppr超能文献

通过随机序列肽微阵列探索抗体对序列空间的识别。

Exploring antibody recognition of sequence space through random-sequence peptide microarrays.

机构信息

Center for Innovations in Medicine, Biodesign Institute, Arizona State University, PO Box 875901, Tempe AZ 85281, USA.

出版信息

Mol Cell Proteomics. 2011 Mar;10(3):M110.000786. doi: 10.1074/mcp.M110.000786. Epub 2010 Nov 9.

Abstract

A universal platform for efficiently mapping antibody epitopes would be of great use for many applications, ranging from antibody therapeutic development to vaccine design. Here we tested the feasibility of using a random peptide microarray to map antibody epitopes. Although peptide microarrays are physically constrained to ∼10(4) peptides per array, compared with 10(8) permitted in library panning approaches such as phage display, they enable a much more high though put and direct measure of binding. Long (20 mer) random sequence peptides were chosen for this study to look at an unbiased sampling of sequence space. This sampling of sequence space is sparse, as an exact epitope sequence is unlikely to appear. Commercial monoclonal antibodies with known linear epitopes or polyclonal antibodies raised against engineered 20-mer peptides were used to evaluate this array as an epitope mapping platform. Remarkably, peptides with the most sequence similarity to known epitopes were only slightly more likely to be recognized by the antibody than other random peptides. We explored the ability of two methods singly and in combination to predict the actual epitope from the random sequence peptides bound. Though the epitopes were not directly evident, subtle motifs were found among the top binding peptides for each antibody. These motifs did have some predictive ability in searching for the known epitopes among a set of decoy sequences. The second approach using a windowing alignment strategy, was able to score known epitopes of monoclonal antibodies well within the test dataset, but did not perform as well on polyclonals. Random peptide microarrays of even limited diversity may serve as a useful tool to prioritize candidates for epitope mapping or antigen identification.

摘要

一个通用的平台,可以有效地绘制抗体表位,将对许多应用非常有用,从抗体治疗的发展到疫苗的设计。在这里,我们测试了使用随机肽微阵列来绘制抗体表位的可行性。虽然肽微阵列在物理上被限制在每个阵列上约 10(4)个肽,与噬菌体展示等文库筛选方法允许的 10(8)个肽相比,它们可以实现更高的通量和直接的结合测量。为了研究这个问题,我们选择了 20 个长的随机序列肽,以观察序列空间的无偏采样。由于不太可能出现精确的表位序列,因此这种序列空间的采样是稀疏的。使用具有已知线性表位的商业单克隆抗体或针对工程 20 个肽的多克隆抗体来评估这种作为表位作图平台的肽阵列。值得注意的是,与已知表位具有最相似序列的肽比其他随机肽被抗体识别的可能性仅略高。我们探索了两种方法单独和组合使用的能力,以从结合的随机序列肽中预测实际的表位。虽然表位并不直接明显,但在每个抗体的最佳结合肽中发现了一些微妙的模式。这些模式在搜索一组诱饵序列中的已知表位时具有一定的预测能力。第二种方法使用窗口对齐策略,能够很好地在测试数据集中对单克隆抗体的已知表位进行评分,但对多克隆抗体的效果不如前者。即使多样性有限的随机肽微阵列也可以作为一个有用的工具,用于优先考虑候选表位作图或抗原识别。

相似文献

5
Peptide microarrays for determination of cross-reactivity.用于交叉反应性测定的肽微阵列。
Methods Mol Biol. 2009;524:225-34. doi: 10.1007/978-1-59745-450-6_16.

引用本文的文献

2
Production of high-complexity frameshift neoantigen peptide microarrays.高复杂性移码新抗原肽微阵列的制备。
RSC Adv. 2020 Aug 11;10(50):29675-29681. doi: 10.1039/d0ra05267a. eCollection 2020 Aug 10.
4
Antibody characterization using immunosignatures.使用免疫特征进行抗体分析。
PLoS One. 2020 Mar 20;15(3):e0229080. doi: 10.1371/journal.pone.0229080. eCollection 2020.
6
High-Density Redox Amplified Coulostatic Discharge-Based Biosensor Array.基于高密度氧化还原放大恒电流放电的生物传感器阵列
IEEE J Solid-State Circuits. 2018 Jul;53(7):2054-2064. doi: 10.1109/JSSC.2018.2820705. Epub 2018 Apr 27.
9
Antibody repertoire profiling with mimotope arrays.使用模拟表位阵列进行抗体库分析。
Hum Vaccin Immunother. 2017 Feb;13(2):314-322. doi: 10.1080/21645515.2017.1264786. Epub 2016 Dec 8.
10
A General Method to Discover Epitopes from Sera.一种从血清中发现表位的通用方法。
PLoS One. 2016 Jun 14;11(6):e0157462. doi: 10.1371/journal.pone.0157462. eCollection 2016.

本文引用的文献

5
Peptide microarrays for carbohydrate recognition.用于碳水化合物识别的肽微阵列。
Analyst. 2009 Apr;134(4):650-2. doi: 10.1039/b823156g. Epub 2009 Feb 11.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验