Lu Albert W, Rakić Aleksandar D
School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
Appl Opt. 2009 Apr 20;48(12):2282-9. doi: 10.1364/ao.48.002282.
A multivariable and multiobjective organic light emitting diode (OLED) design and optimization procedure is presented that produces a microcavity OLED with optimal optical and electrical characteristics. We propose here a design procedure that splits the design process into two design stages where each stage can be optimized independently. In the first stage we design the OLED with optimal electrical and optical performance, where the mirrors are specified by their optimal spectral reflectivity, transmissivity, absorptance, and the phase shift on reflection. In the second stage we synthesize the top and the bottom multilayer mirrors with a minimal number of layers that satisfy the required optimal spectral dependencies determined in the first part of the design process. As a case study we present an optimized design for a top-emitting OLED with a simple bilayered cavity consisting of N, N'-di(naphthalene-1-yl)-N, N'-diphenylbenzidine (NPB) as the hole transport layer and tris(8-hydroxyquinoline)aluminium (Alq3) as the electron transport layer. Conventional devices with an ITO-LiF/Al electrode pair and a Ag?Ag electrode pair are used as reference devices to benchmark the performance of our design. Electrical simulations using the drift-diffusion model and optical simulations employing the integrated dipole antenna approach are implemented to test the performance of the devices. The optimized device shows improved optical and electrical performance when compared with the reference devices.
本文提出了一种多变量、多目标的有机发光二极管(OLED)设计与优化程序,该程序可制造出具有最佳光学和电学特性的微腔OLED。我们在此提出一种设计程序,将设计过程分为两个设计阶段,每个阶段均可独立优化。在第一阶段,我们设计具有最佳电学和光学性能的OLED,其中反射镜由其最佳光谱反射率、透射率、吸收率以及反射时的相移来指定。在第二阶段,我们合成顶部和底部多层反射镜,使其层数最少,同时满足在设计过程第一部分中确定的所需最佳光谱依赖性。作为一个案例研究,我们给出了一种顶部发射OLED的优化设计,其具有一个简单的双层腔,由作为空穴传输层的N,N'-二(萘-1-基)-N,N'-二苯基联苯胺(NPB)和作为电子传输层的三(8-羟基喹啉)铝(Alq3)组成。采用ITO-LiF/Al电极对和Ag?Ag电极对的传统器件用作参考器件,以衡量我们设计的性能。使用漂移扩散模型进行电学模拟,并采用集成偶极天线方法进行光学模拟,以测试器件的性能。与参考器件相比,优化后的器件展现出了更好的光学和电学性能。