Suppr超能文献

[MnO₃对有机发光二极管光电性能的影响]

[Influence of MnO3 on Photoelectric Performance in Organic Light Emitting Diodes].

作者信息

Guan Yun-xia, Chen Li-jia, Chen Ping, Fu Xiao-qiang, Niu Lian-bin

出版信息

Guang Pu Xue Yu Guang Pu Fen Xi. 2016 Mar;36(3):648-52.

Abstract

Organic Light Emitting Diodes (OLEDs) has been a promising new research point that has received much attention recently. Emission in a conventional OLED originates from the recombination of carriers (electrons and holes) that are injected from external electrodes. In the device, Electrons, on the other hand, are injected from the Al cathode to an electron-transporting layer and travel to the same emissive zone. Holes are injected from the transparent ITO anode to a hole-transporting layer and holes reach an emitting zone through the holetransporting layer. Electrons and holes recombine at the emissive film to formsinglet excited states, followed by emissive light. It is because OLED is basically an optical device and its structure consists of organic or inorganic layers of sub-wavelength thickness with different refractive indices. When the electron and holes are injected through the electrodes, they combine in the emission zone emitting the photons. These photons will have the reflection and transmission at each interface and the interference will determine the intensity profile. The emissive light reflected at the interfaces or the metallic electrode returns to the emissive layer and affects the radiation current efficiency. Microcavity OLED can produce saturated colors and narrow the emission spetrum as a new kind of technique. In the paper, we fabricate microcavity OLED using glass substrate. Ag film acts as the anode reflector mirror; NPB serves as the hole-transporting material; Alq3 is electron-transporting material and organic emissive material; Ag film acts as cathode reflector mirror. The microcavity OLED structures named as A, B, C and D are glass/Ag(15 nm)/MoO3 (x nm)/NPB(50 nm)/Alq3 (60 nm)/A1(100 nm). Here, A, x = 4 nm; B, x = 7 nm; C, x = 10 nm; D, x = 13 nm. The characteristic voltage, brightness and current of these devices are investigated in the electric field. The luminance from the Devices A, B, C and D reaches the luminance of 928, 1 369, 2 550 and 2 035 cd x m(-2), respectively at 13 V. At 60 mA x cm(-2), the current efficiency of the microcavity OLEDs using MnO3 are about 2.2, 2.6, 3.1 and 2.6 cd x A(-2) respectively. It is found that electrons are majority carriers and holes are minority carriers in this microcavity OLEDs. MnO3 film can improve hole injection ability from 4 to 10 nm. In addition, hole injection ability is increased with the increasing thickness of the MnO3 film.

摘要

有机发光二极管(OLED)一直是一个很有前景的新研究点,最近受到了广泛关注。传统OLED中的发光源于从外部电极注入的载流子(电子和空穴)的复合。在该器件中,另一方面,电子从铝阴极注入到电子传输层,并传输到同一发光区。空穴从透明的氧化铟锡(ITO)阳极注入到空穴传输层,空穴通过空穴传输层到达发光区。电子和空穴在发光膜处复合形成单重激发态,随后发出光。这是因为OLED本质上是一种光学器件,其结构由具有不同折射率的亚波长厚度的有机或无机层组成。当电子和空穴通过电极注入时,它们在发射区复合并发射光子。这些光子会在每个界面发生反射和透射,干涉将决定强度分布。在界面或金属电极处反射的发射光返回发光层并影响辐射电流效率。微腔OLED作为一种新技术可以产生饱和颜色并使发射光谱变窄。在本文中,我们使用玻璃基板制造微腔OLED。银膜用作阳极反射镜;N,N'-二苯基-N,N'-双(1-萘基)-1,1'-联苯-4,4'-二胺(NPB)用作空穴传输材料;三(8-羟基喹啉)铝(Alq3)是电子传输材料和有机发光材料;银膜用作阴极反射镜。命名为A、B、C和D的微腔OLED结构为玻璃/银(15纳米)/三氧化钼(x纳米)/NPB(50纳米)/Alq3(60纳米)/铝(100纳米)。这里,A,x = 4纳米;B,x = 7纳米;C,x = 10纳米;D,x = 13纳米。在电场中研究了这些器件的特征电压、亮度和电流。器件A、B、C和D在13伏时的亮度分别达到928、1369、2550和2035坎德拉每平方米。在60毫安每平方厘米时,使用三氧化钼的微腔OLED的电流效率分别约为2.2、2.6、3.1和2.6坎德拉每安培。发现在这种微腔OLED中电子是多数载流子,空穴是少数载流子。三氧化钼膜可以将空穴注入能力从4纳米提高到10纳米。此外,空穴注入能力随着三氧化钼膜厚度的增加而提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验