Suppr超能文献

3-溴丙酮酸作为肿瘤细胞能量代谢抑制剂和铂类药物的化疗增效剂。

3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs.

作者信息

Ihrlund Linda Strandberg, Hernlund Emma, Khan Omar, Shoshan Maria C

机构信息

Department of Oncology-Pathology, Cancer Centre Karolinska, Karolinska Institute, S-171 76 Stockholm, Sweden.

出版信息

Mol Oncol. 2008 Jun;2(1):94-101. doi: 10.1016/j.molonc.2008.01.003. Epub 2008 Jan 13.

Abstract

Tumour cells depend on aerobic glycolysis for adenosine triphosphate (ATP) production, making energy metabolism an interesting therapeutic target. 3-Bromopyruvate (BP) has been shown by others to inhibit hexokinase and eradicate mouse hepatocarcinomas. We report that similar to the glycolysis inhibitor 2-deoxyglucose (DG), BP rapidly decreased cellular ATP within hours, but unlike DG, BP concomitantly induced mitochondrial depolarization without affecting levels of reducing equivalents. Over 24h, and at equitoxic doses, DG reduced glucose consumption more than did BP. The observed BP-induced loss of ATP is therefore largely due to mitochondrial effects. Cell death induced over 24h by BP, but not DG, was blocked by N-acetylcysteine, indicating involvement of reactive oxygen species. BP-induced cytotoxicity was independent of p53. When combined with cisplatin or oxaliplatin, BP led to massive cell death. The anti-proliferative effects of low-dose platinum were strikingly potentiated also in resistant p53-deficient cells. Together with the reported lack of toxicity, this indicates the potential of BP as a clinical chemopotentiating agent.

摘要

肿瘤细胞依赖有氧糖酵解来产生三磷酸腺苷(ATP),这使得能量代谢成为一个有趣的治疗靶点。其他人已证明3-溴丙酮酸(BP)可抑制己糖激酶并根除小鼠肝癌。我们报告,与糖酵解抑制剂2-脱氧葡萄糖(DG)相似,BP在数小时内迅速降低细胞内ATP水平,但与DG不同的是,BP同时诱导线粒体去极化,而不影响还原当量水平。在24小时内,以同等毒性剂量给药时,DG比BP更能降低葡萄糖消耗。因此,观察到的BP诱导的ATP损失主要是由于线粒体效应。BP而非DG在24小时内诱导的细胞死亡可被N-乙酰半胱氨酸阻断,这表明活性氧参与其中。BP诱导的细胞毒性与p53无关。当与顺铂或奥沙利铂联合使用时,BP导致大量细胞死亡。低剂量铂的抗增殖作用在p53缺陷的耐药细胞中也显著增强。再加上已报道的无毒性,这表明BP作为临床化疗增效剂的潜力。

相似文献

1
3-Bromopyruvate as inhibitor of tumour cell energy metabolism and chemopotentiator of platinum drugs.
Mol Oncol. 2008 Jun;2(1):94-101. doi: 10.1016/j.molonc.2008.01.003. Epub 2008 Jan 13.
2
4
Separate and concurrent use of 2-deoxy-D-glucose and 3-bromopyruvate in pancreatic cancer cells.
Oncol Rep. 2013 Jan;29(1):329-34. doi: 10.3892/or.2012.2085. Epub 2012 Oct 17.
5
ABT737 reverses cisplatin resistance by targeting glucose metabolism of human ovarian cancer cells.
Int J Oncol. 2018 Sep;53(3):1055-1068. doi: 10.3892/ijo.2018.4476. Epub 2018 Jul 9.
6
Structural and functional remodeling of mitochondria as an adaptive response to energy deprivation.
Biochim Biophys Acta Bioenerg. 2021 Jun 1;1862(6):148393. doi: 10.1016/j.bbabio.2021.148393. Epub 2021 Feb 5.
7
Energy metabolism targeted drugs synergize with photodynamic therapy to potentiate breast cancer cell death.
Photochem Photobiol Sci. 2014 Dec;13(12):1793-803. doi: 10.1039/c4pp00288a. Epub 2014 Nov 3.
9
Ovarian carcinoma cells with low levels of beta-F1-ATPase are sensitive to combined platinum and 2-deoxy-D-glucose treatment.
Mol Cancer Ther. 2009 Jul;8(7):1916-23. doi: 10.1158/1535-7163.MCT-09-0179. Epub 2009 Jun 30.
10
3-Bromopyruvate induces rapid human prostate cancer cell death by affecting cell energy metabolism, GSH pool and the glyoxalase system.
J Bioenerg Biomembr. 2015 Dec;47(6):493-506. doi: 10.1007/s10863-015-9631-y. Epub 2015 Nov 3.

引用本文的文献

1
Metabolic Reprogramming: A Crucial Contributor to Anticancer Drug Resistance.
MedComm (2020). 2025 Sep 6;6(9):e70358. doi: 10.1002/mco2.70358. eCollection 2025 Sep.
2
Clinical application prospects of traditional Chinese medicine as adjuvant therapy for metabolic reprogramming in colorectal cancer.
Front Immunol. 2025 Jul 15;16:1630279. doi: 10.3389/fimmu.2025.1630279. eCollection 2025.
7
Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly.
World J Gastroenterol. 2023 Aug 7;29(29):4499-4527. doi: 10.3748/wjg.v29.i29.4499.
8
Anti-Glycolytic Drugs in the Treatment of Hepatocellular Carcinoma: Systemic and Locoregional Options.
Curr Oncol. 2023 Jul 10;30(7):6609-6622. doi: 10.3390/curroncol30070485.
9
Role of Glucose Metabolic Reprogramming in Breast Cancer Progression and Drug Resistance.
Cancers (Basel). 2023 Jun 28;15(13):3390. doi: 10.3390/cancers15133390.
10
Cardiomyocyte infection by promotes innate immune response and glycolysis activation.
Front Cell Infect Microbiol. 2023 Feb 6;13:1098457. doi: 10.3389/fcimb.2023.1098457. eCollection 2023.

本文引用的文献

1
Reactive oxygen species in mitochondria-mediated cell death.
Drug Metab Rev. 2007;39(2-3):443-55. doi: 10.1080/03602530701468516.
2
The cancer cell's "power plants" as promising therapeutic targets: an overview.
J Bioenerg Biomembr. 2007 Feb;39(1):1-12. doi: 10.1007/s10863-007-9070-5.
3
Glucose metabolism and cancer.
Curr Opin Cell Biol. 2006 Dec;18(6):598-608. doi: 10.1016/j.ceb.2006.10.005. Epub 2006 Oct 12.
5
Cancer's molecular sweet tooth and the Warburg effect.
Cancer Res. 2006 Sep 15;66(18):8927-30. doi: 10.1158/0008-5472.CAN-06-1501.
6
Inactivation of H+-vacuolar ATPase by the energy blocker 3-bromopyruvate, a new antitumour agent.
Life Sci. 2006 Oct 19;79(21):2049-55. doi: 10.1016/j.lfs.2006.06.043. Epub 2006 Jul 5.
7
p53 regulates mitochondrial respiration.
Science. 2006 Jun 16;312(5780):1650-3. doi: 10.1126/science.1126863. Epub 2006 May 25.
8
Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction.
Biotechnol Annu Rev. 2005;11:127-52. doi: 10.1016/S1387-2656(05)11004-7.
9
Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis.
Carcinogenesis. 2005 Dec;26(12):2095-104. doi: 10.1093/carcin/bgi188. Epub 2005 Jul 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验