Pedersen Peter L
Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 North Wolfe Street, Baltimore, Maryland 21205-2185, USA.
J Bioenerg Biomembr. 2007 Feb;39(1):1-12. doi: 10.1007/s10863-007-9070-5.
This introductory article to the review series entitled "The Cancer Cell's Power Plants as Promising Therapeutic Targets" is written while more than 20 million people suffer from cancer. It summarizes strategies to destroy or prevent cancers by targeting their energy production factories, i.e., "power plants." All nucleated animal/human cells have two types of power plants, i.e., systems that make the "high energy" compound ATP from ADP and P( i ). One type is "glycolysis," the other the "mitochondria." In contrast to most normal cells where the mitochondria are the major ATP producers (>90%) in fueling growth, human cancers detected via Positron Emission Tomography (PET) rely on both types of power plants. In such cancers, glycolysis may contribute nearly half the ATP even in the presence of oxygen ("Warburg effect"). Based solely on cell energetics, this presents a challenge to identify curative agents that destroy only cancer cells as they must destroy both of their power plants causing "necrotic cell death" and leave normal cells alone. One such agent, 3-bromopyruvate (3-BrPA), a lactic acid analog, has been shown to inhibit both glycolytic and mitochondrial ATP production in rapidly growing cancers (Ko et al., Cancer Letts., 173, 83-91, 2001), leave normal cells alone, and eradicate advanced cancers (19 of 19) in a rodent model (Ko et al., Biochem. Biophys. Res. Commun., 324, 269-275, 2004). A second approach is to induce only cancer cells to undergo "apoptotic cell death." Here, mitochondria release cell death inducing factors (e.g., cytochrome c). In a third approach, cancer cells are induced to die by both apoptotic and necrotic events. In summary, much effort is being focused on identifying agents that induce "necrotic," "apoptotic" or apoptotic plus necrotic cell death only in cancer cells. Regardless how death is inflicted, every cancer cell must die, be it fast or slow.
这篇为名为“癌细胞的能量工厂作为有前景的治疗靶点”的综述系列所撰写的介绍性文章,是在超过2000万人罹患癌症的背景下写成的。它总结了通过靶向癌细胞的能量生产工厂,即“能量工厂”来摧毁或预防癌症的策略。所有有核的动物/人类细胞都有两种能量工厂,即从二磷酸腺苷(ADP)和磷酸(Pi)合成“高能”化合物三磷酸腺苷(ATP)的系统。一种是“糖酵解”,另一种是“线粒体”。与大多数正常细胞不同,在正常细胞中,线粒体是为生长提供能量的主要ATP生产者(>90%),而通过正电子发射断层扫描(PET)检测到的人类癌症依赖于这两种能量工厂。在这类癌症中,即使在有氧的情况下,糖酵解也可能提供近一半的ATP(“瓦伯格效应”)。仅基于细胞能量学,这就带来了一个挑战,即要确定只破坏癌细胞的治疗药物,因为这些药物必须同时破坏癌细胞的两种能量工厂,导致“坏死性细胞死亡”,而不影响正常细胞。一种这样的药物,3 - 溴丙酮酸(3 - BrPA),一种乳酸类似物,已被证明能抑制快速生长的癌症中的糖酵解和线粒体ATP生成(Ko等人,《癌症快报》,第173卷,第83 - 91页,2001年),不影响正常细胞,并在啮齿动物模型中根除晚期癌症(19例中的19例)(Ko等人,《生物化学与生物物理研究通讯》,第324卷,第269 - 275页,2004年)。第二种方法是仅诱导癌细胞发生“凋亡性细胞死亡”。在此过程中,线粒体释放诱导细胞死亡的因子(如细胞色素c)。第三种方法是诱导癌细胞通过凋亡和坏死事件死亡。总之,大量的努力都集中在确定仅在癌细胞中诱导“坏死性”、“凋亡性”或凋亡加坏死性细胞死亡的药物上。无论死亡是如何造成的,每个癌细胞都必须死亡,无论是快还是慢。