Podoly Erez, Shalev Deborah E, Shenhar-Tsarfaty Shani, Bennett Estelle R, Ben Assayag Einor, Wilgus Harvey, Livnah Oded, Soreq Hermona
From The Alexander Silberman Life Sciences Institute, Jerusalem 91904, Israel; The Wolfson Centre for Applied Structural Biology, Safra Campus Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
The Wolfson Centre for Applied Structural Biology, Safra Campus Givat Ram, Hebrew University of Jerusalem, Jerusalem 91904, Israel.
J Biol Chem. 2009 Jun 19;284(25):17170-17179. doi: 10.1074/jbc.M109.004952. Epub 2009 Apr 21.
The K variant of butyrylcholinesterase (BChE-K, 20% incidence) is a long debated risk factor for Alzheimer disease (AD). The A539T substitution in BChE-K is located at the C terminus, which is essential both for BChE tetramerization and for its capacity to attenuate beta-amyloid (Abeta) fibril formation. Here, we report that BChE-K is inherently unstable as compared with the "usual" BChE (BChE-U), resulting in reduced hydrolytic activity and predicting prolonged acetylcholine maintenance and protection from AD. A synthetic peptide derived from the C terminus of BChE-K (BSP-K), which displayed impaired intermolecular interactions, was less potent in suppressing Abeta oligomerization than its BSP-U counterpart. Correspondingly, highly purified recombinant human rBChE-U monomers suppressed beta-amyloid fibril formation less effectively than dimers, which also protected cultured neuroblastoma cells from Abeta neurotoxicity. Dual activity structurally derived changes due to the A539T substitution can thus account for both neuroprotective characteristics caused by sustained acetylcholine levels and elevated AD risk due to inefficient interference with amyloidogenic processes.
丁酰胆碱酯酶的K变体(BChE-K,发生率为20%)是阿尔茨海默病(AD)一个长期存在争议的风险因素。BChE-K中的A539T替代位于C末端,这对于BChE四聚体化及其减弱β-淀粉样蛋白(Aβ)纤维形成的能力都至关重要。在此,我们报告,与“普通”BChE(BChE-U)相比,BChE-K本质上不稳定,导致水解活性降低,并预示着乙酰胆碱维持时间延长以及对AD的保护作用。源自BChE-K C末端的合成肽(BSP-K)表现出分子间相互作用受损,在抑制Aβ寡聚化方面比其BSP-U对应物效力更低。相应地,高度纯化的重组人rBChE-U单体抑制β-淀粉样蛋白纤维形成的效果不如二聚体,二聚体还能保护培养的神经母细胞瘤细胞免受Aβ神经毒性。由于A539T替代导致的双重活性结构变化,因此可以解释由持续乙酰胆碱水平引起的神经保护特性以及因对淀粉样蛋白生成过程干扰不足而导致的AD风险升高。