Suppr超能文献

高血糖通过醛糖还原酶多元醇途径调节RUNX2激活和细胞伤口愈合。

Hyperglycemia regulates RUNX2 activation and cellular wound healing through the aldose reductase polyol pathway.

作者信息

D'Souza David R, Salib Maryann M, Bennett Jessica, Mochin-Peters Maria, Asrani Kaushal, Goldblum Simeon E, Renoud Keli J, Shapiro Paul, Passaniti Antonino

机构信息

Department of Pathology, Graduate Program in Life Sciences, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, USA.

出版信息

J Biol Chem. 2009 Jul 3;284(27):17947-55. doi: 10.1074/jbc.M109.002378. Epub 2009 Apr 21.

Abstract

Diabetes mellitus accelerates cardiovascular microangiopathies and atherosclerosis, which are a consequence of hyperglycemia. The aldose reductase (AR) polyol pathway contributes to these microvascular complications, but how it mediates vascular damage in response to hyperglycemia is less understood. The RUNX2 transcription factor, which is repressed in diabetic animals, promotes vascular endothelial cell (EC) migration, proliferation, and angiogenesis. Here we show that physiological levels of glucose (euglycemia) increase RUNX2 DNA binding and transcriptional activity, whereas hyperglycemia does not. However, inhibition of AR reverses hyperglycemic suppression of RUNX2. IGF-1 secretion and IGF receptor phosphorylation by autocrine IGF-1 occur equally in euglycemic or hyperglycemic conditions, suggesting that reduced RUNX2 activity in response to hyperglycemia is not because of altered IGF-1/IGF receptor activation. AR also negatively regulates RUNX2-dependent vascular remodeling in an EC wounded monolayer assay, which is reversed by specific AR inhibition in hyperglycemia. Thus, euglycemia supports RUNX2 activity and promotes normal microvascular EC migration and wound healing, which are repressed under hyperglycemic conditions through the AR polyol pathway.

摘要

糖尿病会加速心血管微血管病变和动脉粥样硬化,而这是高血糖的后果。醛糖还原酶(AR)多元醇途径促成了这些微血管并发症,但对于其如何介导高血糖引起的血管损伤却知之甚少。RUNX2转录因子在糖尿病动物中受到抑制,它能促进血管内皮细胞(EC)迁移、增殖和血管生成。在此我们表明,生理水平的葡萄糖(正常血糖)会增加RUNX2与DNA的结合及转录活性,而高血糖则不会。然而,抑制AR可逆转高血糖对RUNX2的抑制作用。在正常血糖或高血糖条件下,自分泌IGF-1引起的IGF-1分泌和IGF受体磷酸化情况相同,这表明高血糖时RUNX2活性降低并非由于IGF-1/IGF受体激活改变所致。在EC损伤单层试验中,AR也对RUNX2依赖性血管重塑起负调节作用,而高血糖时特异性抑制AR可逆转这种作用。因此,正常血糖支持RUNX2活性并促进正常微血管EC迁移和伤口愈合,而在高血糖条件下这些过程会通过AR多元醇途径受到抑制。

相似文献

1
Hyperglycemia regulates RUNX2 activation and cellular wound healing through the aldose reductase polyol pathway.
J Biol Chem. 2009 Jul 3;284(27):17947-55. doi: 10.1074/jbc.M109.002378. Epub 2009 Apr 21.
2
Hyperglycemia and redox status regulate RUNX2 DNA-binding and an angiogenic phenotype in endothelial cells.
Microvasc Res. 2015 Jan;97:55-64. doi: 10.1016/j.mvr.2014.09.008. Epub 2014 Oct 2.
5
Aldose reductase regulates hyperglycemia-induced HUVEC death via SIRT1/AMPK-α1/mTOR pathway.
J Mol Endocrinol. 2019 Jul 1;63(1):11-25. doi: 10.1530/JME-19-0080.
9
Aldose reductase mediates cytotoxic signals of hyperglycemia and TNF-alpha in human lens epithelial cells.
FASEB J. 2003 Feb;17(2):315-7. doi: 10.1096/fj.02-0568fje. Epub 2002 Dec 17.
10
Serum response factor regulates bone formation via IGF-1 and Runx2 signals.
J Bone Miner Res. 2012 Aug;27(8):1659-68. doi: 10.1002/jbmr.1607.

引用本文的文献

1
Role of oxidative stress in impaired type II diabetic bone repair: scope for antioxidant therapy intervention?
Front Dent Med. 2024 Oct 14;5:1464009. doi: 10.3389/fdmed.2024.1464009. eCollection 2024.
2
Modulatory effect of caffeic acid in alleviating diabetes and associated complications.
World J Diabetes. 2023 Feb 15;14(2):62-75. doi: 10.4239/wjd.v14.i2.62.
4
Potential role of oxidative stress in the pathogenesis of diabetic bladder dysfunction.
Nat Rev Urol. 2022 Oct;19(10):581-596. doi: 10.1038/s41585-022-00621-1. Epub 2022 Aug 16.
5
MALAT1 sponges miR-26a and miR-26b to regulate endothelial cell angiogenesis via PFKFB3-driven glycolysis in early-onset preeclampsia.
Mol Ther Nucleic Acids. 2021 Jan 16;23:897-907. doi: 10.1016/j.omtn.2021.01.005. eCollection 2021 Mar 5.
7
Characterization of CADD522, a small molecule that inhibits RUNX2-DNA binding and exhibits antitumor activity.
Oncotarget. 2017 Aug 10;8(41):70916-70940. doi: 10.18632/oncotarget.20200. eCollection 2017 Sep 19.
9
Intensive versus conventional glycaemic control for treating diabetic foot ulcers.
Cochrane Database Syst Rev. 2016 Jan 13;2016(1):CD010764. doi: 10.1002/14651858.CD010764.pub2.
10
Restoration of Nrf2 Signaling Normalizes the Regenerative Niche.
Diabetes. 2016 Mar;65(3):633-46. doi: 10.2337/db15-0453. Epub 2015 Dec 8.

本文引用的文献

1
Using Caenorhabditis elegans as a model organism for evaluating extracellular signal-regulated kinase docking domain inhibitors.
J Cell Commun Signal. 2008 Dec;2(3-4):81-92. doi: 10.1007/s12079-008-0034-2. Epub 2008 Dec 23.
3
More sugar, less blood vessels: another piece in the puzzle of increased cardiovascular risk in diabetes.
Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):608-10. doi: 10.1161/ATVBAHA.108.162057.
4
Hyperglycemia and the pathobiology of diabetic complications.
Adv Cardiol. 2008;45:1-16. doi: 10.1159/000115118.
5
Taming vessels to treat cancer.
Sci Am. 2008 Jan;298(1):56-63. doi: 10.1038/scientificamerican0108-56.
8
The biology of cancer: metabolic reprogramming fuels cell growth and proliferation.
Cell Metab. 2008 Jan;7(1):11-20. doi: 10.1016/j.cmet.2007.10.002.
9
Protein modification by O-linked GlcNAc reduces angiogenesis by inhibiting Akt activity in endothelial cells.
Arterioscler Thromb Vasc Biol. 2008 Apr;28(4):651-7. doi: 10.1161/ATVBAHA.107.159533. Epub 2008 Jan 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验