Suppr超能文献

棕榈酸通过诱导线粒体损伤并激活胞质DNA传感器cGAS-STING-IRF3信号机制,失调Hippo-YAP信号通路并抑制血管生成。

Palmitic acid dysregulates the Hippo-YAP pathway and inhibits angiogenesis by inducing mitochondrial damage and activating the cytosolic DNA sensor cGAS-STING-IRF3 signaling mechanism.

作者信息

Yuan Liangshuai, Mao Yun, Luo Wei, Wu Weiwei, Xu Hao, Wang Xing Li, Shen Ying H

机构信息

From the Shandong University Qilu Hospital Research Center for Cell Therapy, Key Laboratory of Cardiovascular Remodeling and Function Research.

the Qilu Hospital of Shandong University, Jinan 250012, China.

出版信息

J Biol Chem. 2017 Sep 8;292(36):15002-15015. doi: 10.1074/jbc.M117.804005. Epub 2017 Jul 11.

Abstract

Impaired angiogenesis and wound healing carry significant morbidity and mortality in diabetic patients. Metabolic stress from hyperglycemia and elevated free fatty acids have been shown to inhibit endothelial angiogenesis. However, the underlying mechanisms remain poorly understood. In this study, we show that dysregulation of the Hippo-Yes-associated protein (YAP) pathway, an important signaling mechanism in regulating tissue repair and regeneration, underlies palmitic acid (PA)-induced inhibition of endothelial angiogenesis. PA inhibited endothelial cell proliferation, migration, and tube formation, which were associated with increased expression of mammalian Ste20-like kinases 1 (MST1), YAP phosphorylation/inactivation, and nuclear exclusion. Overexpression of YAP or knockdown of MST1 prevented PA-induced inhibition of angiogenesis. When searching upstream signaling mechanisms, we found that PA dysregulated the Hippo-YAP pathway by inducing mitochondrial damage. PA treatment induced mitochondrial DNA (mtDNA) release to cytosol, and activated cytosolic DNA sensor cGAS-STING-IRF3 signaling. Activated IRF3 bound to the gene promoter and induced MST1 expression, leading to MST1 up-regulation, YAP inactivation, and angiogenesis inhibition. Thus, mitochondrial damage and cytosolic DNA sensor cGAS-STING-IRF3 signaling are critically involved in PA-induced Hippo-YAP dysregulation and angiogenesis suppression. This mechanism may have implication in impairment of angiogenesis and wound healing in diabetes.

摘要

血管生成受损和伤口愈合不良在糖尿病患者中具有显著的发病率和死亡率。高血糖和游离脂肪酸升高引起的代谢应激已被证明会抑制内皮细胞血管生成。然而,其潜在机制仍知之甚少。在本研究中,我们发现,作为调节组织修复和再生的重要信号机制,Hippo-Yes相关蛋白(YAP)通路失调是棕榈酸(PA)诱导的内皮细胞血管生成抑制的基础。PA抑制内皮细胞增殖、迁移和管腔形成,这与哺乳动物Ste20样激酶1(MST1)表达增加、YAP磷酸化/失活及核排除有关。YAP过表达或MST1敲低可防止PA诱导的血管生成抑制。在探寻上游信号机制时,我们发现PA通过诱导线粒体损伤使Hippo-YAP通路失调。PA处理诱导线粒体DNA(mtDNA)释放到细胞质中,并激活细胞质DNA传感器cGAS-STING-IRF3信号通路。激活的IRF3与 基因启动子结合并诱导MST1表达,导致MST1上调、YAP失活和血管生成抑制。因此,线粒体损伤和细胞质DNA传感器cGAS-STING-IRF3信号通路在PA诱导的Hippo-YAP失调和血管生成抑制中起关键作用。这一机制可能与糖尿病患者血管生成受损和伤口愈合不良有关。

相似文献

2
STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity.
Arterioscler Thromb Vasc Biol. 2017 May;37(5):920-929. doi: 10.1161/ATVBAHA.117.309017. Epub 2017 Mar 16.
5
Angiomotins stimulate LATS kinase autophosphorylation and act as scaffolds that promote Hippo signaling.
J Biol Chem. 2018 Nov 23;293(47):18230-18241. doi: 10.1074/jbc.RA118.004187. Epub 2018 Sep 28.
6
The MST4-MOB4 complex disrupts the MST1-MOB1 complex in the Hippo-YAP pathway and plays a pro-oncogenic role in pancreatic cancer.
J Biol Chem. 2018 Sep 14;293(37):14455-14469. doi: 10.1074/jbc.RA118.003279. Epub 2018 Aug 2.
8
Palmitic acid promotes endothelial-to-mesenchymal transition via activation of the cytosolic DNA-sensing cGAS-STING pathway.
Arch Biochem Biophys. 2022 Sep 30;727:109321. doi: 10.1016/j.abb.2022.109321. Epub 2022 Jun 10.

引用本文的文献

1
Mitochondrial DNA signals driving immune responses: Why, How, Where?
Cell Commun Signal. 2025 Apr 22;23(1):192. doi: 10.1186/s12964-025-02042-0.
2
The regenerative wound healing effects and molecular mechanism of Isaria cicadae Miquel rice fermentation extract.
Appl Microbiol Biotechnol. 2025 Feb 10;109(1):40. doi: 10.1007/s00253-025-13412-6.
3
Dysregulation of Mitochondrial Homeostasis in Cardiovascular Diseases.
Pharmaceuticals (Basel). 2025 Jan 16;18(1):112. doi: 10.3390/ph18010112.
6
Exploring the role and therapeutic potential of lipid metabolism in acute kidney injury.
Ren Fail. 2024 Dec;46(2):2403652. doi: 10.1080/0886022X.2024.2403652. Epub 2024 Sep 25.
8
Free Fatty Acids and Free Fatty Acid Receptors: Role in Regulating Arterial Function.
Int J Mol Sci. 2024 Jul 18;25(14):7853. doi: 10.3390/ijms25147853.
9
IRF1 regulation of ZBP1 links mitochondrial DNA and chondrocyte damage in osteoarthritis.
Cell Commun Signal. 2024 Jul 18;22(1):366. doi: 10.1186/s12964-024-01744-1.

本文引用的文献

2
STING-IRF3 Triggers Endothelial Inflammation in Response to Free Fatty Acid-Induced Mitochondrial Damage in Diet-Induced Obesity.
Arterioscler Thromb Vasc Biol. 2017 May;37(5):920-929. doi: 10.1161/ATVBAHA.117.309017. Epub 2017 Mar 16.
3
Induction of apoptosis of liver cancer cells by nanosecond pulsed electric fields (nsPEFs).
Med Oncol. 2017 Feb;34(2):24. doi: 10.1007/s12032-016-0882-1. Epub 2017 Jan 6.
4
MST1-dependent vesicle trafficking regulates neutrophil transmigration through the vascular basement membrane.
J Clin Invest. 2016 Nov 1;126(11):4125-4139. doi: 10.1172/JCI87043. Epub 2016 Oct 4.
6
The Hippo pathway in cellular reprogramming and regeneration of different organs.
Curr Opin Cell Biol. 2016 Dec;43:62-68. doi: 10.1016/j.ceb.2016.08.004. Epub 2016 Sep 1.
7
Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus.
Nat Rev Endocrinol. 2016 Nov;12(11):633-645. doi: 10.1038/nrendo.2016.104. Epub 2016 Jul 22.
8
NF2 Activates Hippo Signaling and Promotes Ischemia/Reperfusion Injury in the Heart.
Circ Res. 2016 Aug 19;119(5):596-606. doi: 10.1161/CIRCRESAHA.116.308586. Epub 2016 Jul 11.
9
YAP and TAZ in epithelial stem cells: A sensor for cell polarity, mechanical forces and tissue damage.
Bioessays. 2016 Jul;38(7):644-53. doi: 10.1002/bies.201600037. Epub 2016 May 13.
10
Hippo Signaling Mediators Yap and Taz Are Required in the Epicardium for Coronary Vasculature Development.
Cell Rep. 2016 May 17;15(7):1384-1393. doi: 10.1016/j.celrep.2016.04.027. Epub 2016 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验