Chen Bin, Ren Xuefeng, Neville Tracey, Jerome W Gray, Hoyt David W, Sparks Daniel, Ren Gang, Wang Jianjun
Department of Biochemistry and Molecular Biology, School of Medicine, Wayne State University, Detroit, Michigan 48201, USA.
Protein Sci. 2009 May;18(5):921-35. doi: 10.1002/pro.101.
Human high-density lipoprotein (HDL) plays a key role in the reverse cholesterol transport pathway that delivers excess cholesterol back to the liver for clearance. In vivo, HDL particles vary in size, shape and biological function. The discoidal HDL is a 140-240 kDa, disk-shaped intermediate of mature HDL. During mature spherical HDL formation, discoidal HDLs play a key role in loading cholesterol ester onto the HDL particles by activating the enzyme, lecithin:cholesterol acyltransferase (LCAT). One of the major problems for high-resolution structural studies of discoidal HDL is the difficulty in obtaining pure and, foremost, homogenous sample. We demonstrate here that the commonly used cholate dialysis method for discoidal HDL preparation usually contains 5-10% lipid-poor apoAI that significantly interferes with the high-resolution structural analysis of discoidal HDL using biophysical methods. Using an ultracentrifugation method, we quickly removed lipid-poor apoAI. We also purified discoidal reconstituted HDL (rHDL) into two pure discoidal HDL species of different sizes that are amendable for high-resolution structural studies. A small rHDL has a diameter of 7.6 nm, and a large rHDL has a diameter of 9.8 nm. We show that these two different sizes of discoidal HDL particles display different stability and phospholipid-binding activity. Interestingly, these property/functional differences are independent from the apoAI alpha-helical secondary structure, but are determined by the tertiary structural difference of apoAI on different discoidal rHDL particles, as evidenced by two-dimensional NMR and negative stain electron microscopy data. Our result further provides the first high-resolution NMR data, demonstrating a promise of structural determination of discoidal HDL at atomic resolution using a combination of NMR and other biophysical techniques.
人类高密度脂蛋白(HDL)在逆向胆固醇转运途径中起着关键作用,该途径将多余的胆固醇输送回肝脏进行清除。在体内,HDL颗粒在大小、形状和生物学功能上存在差异。盘状HDL是成熟HDL的一种140 - 240 kDa的盘状中间体。在成熟球形HDL形成过程中,盘状HDL通过激活卵磷脂胆固醇酰基转移酶(LCAT)在将胆固醇酯加载到HDL颗粒上发挥关键作用。盘状HDL高分辨率结构研究的主要问题之一是难以获得纯净且最重要的是均匀的样品。我们在此证明,用于制备盘状HDL的常用胆酸盐透析方法通常含有5 - 10%的低脂载脂蛋白AI,这会显著干扰使用生物物理方法对盘状HDL进行的高分辨率结构分析。使用超速离心方法,我们快速去除了低脂载脂蛋白AI。我们还将盘状重组HDL(rHDL)纯化得到两种不同大小的纯净盘状HDL,适用于高分辨率结构研究。小的rHDL直径为7.6 nm,大的rHDL直径为9.8 nm。我们表明,这两种不同大小的盘状HDL颗粒表现出不同的稳定性和磷脂结合活性。有趣的是,这些性质/功能差异与载脂蛋白AI的α - 螺旋二级结构无关,而是由不同盘状rHDL颗粒上载脂蛋白AI的三级结构差异决定的,二维核磁共振和负染电子显微镜数据证明了这一点。我们的结果进一步提供了首个高分辨率核磁共振数据,证明了结合核磁共振和其他生物物理技术在原子分辨率下确定盘状HDL结构的前景。