Nakanishi Nobuki, Tu Shichun, Shin Yeonsook, Cui Jiankun, Kurokawa Toru, Zhang Dongxian, Chen H-S Vincent, Tong Gary, Lipton Stuart A
Center for Neuroscience, Aging, and Stem Cell Research, Burnham Institute for Medical Research, La Jolla, California 92037, USA.
J Neurosci. 2009 Apr 22;29(16):5260-5. doi: 10.1523/JNEUROSCI.1067-09.2009.
Hyperactivation of NMDA-type glutamate receptors (NMDARs) results in excitotoxicity, contributing to damage in stroke and neurodegenerative disorders. NMDARs are generally comprised of NR1/NR2 subunits but may contain modulatory NR3 subunits. Inclusion of NR3 subunits reduces the amplitude and dramatically decreases the Ca2+ permeability of NMDAR-associated channels in heterologous expression systems and in transgenic mice. Since excessive Ca2+ influx into neurons is a crucial step for excitotoxicity, we asked whether NR3A subunits are neuroprotective. To address this question, we subjected neurons genetically lacking NR3A to various forms of excitotoxic insult. We found that cultured neurons prepared from NR3A knock-out (KO) mice displayed greater sensitivity to damage by NMDA application than wild-type (WT) neurons. In vivo, neonatal, but not adult, WT mice contain NR3A in the cortex, and neonatal NR3A KO mice manifested more damage than WT after hypoxia-ischemia. In adult retina, one location where high levels of NR3A normally persist into adulthood, injection of NMDA into the eye killed more retinal ganglion cells in adult NR3A KO than WT mice. These data suggest that endogenous NR3A is neuroprotective. We next asked whether we could decrease excitotoxicity by overexpressing NR3A. We found that cultured neurons expressing transgenic (TG) NR3A displayed greater resistance to NMDA-mediated neurotoxicity than WT neurons. Similarly in vivo, adult NR3A TG mice subjected to focal cerebral ischemia manifested less damage than WT mice. These data suggest that endogenous NR3A protects neurons, and exogenously added NR3A increases neuroprotection and could be potentially exploited as a therapeutic.
N-甲基-D-天冬氨酸(NMDA)型谷氨酸受体(NMDARs)的过度激活会导致兴奋性毒性,这在中风和神经退行性疾病中会造成损伤。NMDARs通常由NR1/NR2亚基组成,但可能包含调节性NR3亚基。在异源表达系统和转基因小鼠中,NR3亚基的加入会降低NMDAR相关通道的幅度,并显著降低其Ca2+通透性。由于过多的Ca2+流入神经元是兴奋性毒性的关键步骤,我们研究了NR3A亚基是否具有神经保护作用。为了解决这个问题,我们对基因敲除NR3A的神经元施加了各种形式的兴奋性毒性损伤。我们发现,从NR3A基因敲除(KO)小鼠制备的培养神经元对NMDA诱导的损伤比野生型(WT)神经元更敏感。在体内,新生但非成年的WT小鼠在皮质中含有NR3A,缺氧缺血后,新生NR3A KO小鼠比WT小鼠表现出更多的损伤。在成年视网膜中,NR3A通常会高水平持续到成年期,向成年NR3A KO小鼠眼中注射NMDA比WT小鼠杀死了更多的视网膜神经节细胞。这些数据表明内源性NR3A具有神经保护作用。接下来,我们研究了过表达NR3A是否可以降低兴奋性毒性。我们发现,表达转基因(TG)NR3A的培养神经元比WT神经元对NMDA介导的神经毒性具有更强的抵抗力。同样在体内,成年NR3A TG小鼠局灶性脑缺血后损伤比WT小鼠少。这些数据表明内源性NR3A可保护神经元,外源性添加NR3A可增强神经保护作用,有望作为一种治疗手段。