Ashworth Justin, Baker David
Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
Nucleic Acids Res. 2009 Jun;37(10):e73. doi: 10.1093/nar/gkp242. Epub 2009 Apr 23.
The biological functions of DNA-binding proteins often require that they interact with their targets with high affinity and/or high specificity. Here, we describe a computational method that estimates the extent of optimization for affinity and specificity of amino acids at a protein-DNA interface based on the crystal structure of the complex, by modeling the changes in binding-free energy associated with all individual amino acid and base substitutions at the interface. The extent to which residues are predicted to be optimal for specificity versus affinity varies within a given protein-DNA interface and between different complexes, and in many cases recapitulates previous experimental observations. The approach provides a complement to traditional methods of mutational analysis, and should be useful for rapidly formulating hypotheses about the roles of amino acid residues in protein-DNA interfaces.
DNA结合蛋白的生物学功能通常要求它们以高亲和力和/或高特异性与靶标相互作用。在此,我们描述了一种计算方法,该方法基于复合物的晶体结构,通过对与界面处所有单个氨基酸和碱基取代相关的结合自由能变化进行建模,来估计蛋白质-DNA界面处氨基酸亲和力和特异性的优化程度。在给定的蛋白质-DNA界面内以及不同复合物之间,预测残基对特异性与亲和力而言最优的程度各不相同,并且在许多情况下概括了先前的实验观察结果。该方法为传统的突变分析方法提供了补充,并且应该有助于快速形成关于蛋白质-DNA界面中氨基酸残基作用的假设。