Chen Hainan, Gu Xueying, Su I-hsin, Bottino Rita, Contreras Juan L, Tarakhovsky Alexander, Kim Seung K
Department of Developmental Biology, Stanford University School of Medicine, Stanford, California 94305, USA.
Genes Dev. 2009 Apr 15;23(8):975-85. doi: 10.1101/gad.1742509.
Proliferation of pancreatic islet beta cells is an important mechanism for self-renewal and for adaptive islet expansion. Increased expression of the Ink4a/Arf locus, which encodes the cyclin-dependent kinase inhibitor p16(INK4a) and tumor suppressor p19(Arf), limits beta-cell regeneration in aging mice, but the basis of beta-cell Ink4a/Arf regulation is poorly understood. Here we show that Enhancer of zeste homolog 2 (Ezh2), a histone methyltransferase and component of a Polycomb group (PcG) protein complex, represses Ink4a/Arf in islet beta cells. Ezh2 levels decline in aging islet beta cells, and this attrition coincides with reduced histone H3 trimethylation at Ink4a/Arf, and increased levels of p16(INK4a) and p19(Arf). Conditional deletion of beta-cell Ezh2 in juvenile mice also reduced H3 trimethylation at the Ink4a/Arf locus, leading to precocious increases of p16(INK4a) and p19(Arf). These mutant mice had reduced beta-cell proliferation and mass, hypoinsulinemia, and mild diabetes, phenotypes rescued by germline deletion of Ink4a/Arf. beta-Cell destruction with streptozotocin in controls led to increased Ezh2 expression that accompanied adaptive beta-cell proliferation and re-establishment of beta-cell mass; in contrast, mutant mice treated similarly failed to regenerate beta cells, resulting in lethal diabetes. Our discovery of Ezh2-dependent beta-cell proliferation revealed unique epigenetic mechanisms underlying normal beta-cell expansion and beta-cell regenerative failure in diabetes pathogenesis.
胰岛β细胞增殖是自我更新和适应性胰岛扩张的重要机制。编码细胞周期蛋白依赖性激酶抑制剂p16(INK4a)和肿瘤抑制因子p19(Arf)的Ink4a/Arf基因座表达增加,限制了衰老小鼠β细胞的再生,但β细胞Ink4a/Arf调控的基础尚不清楚。在这里,我们表明,组蛋白甲基转移酶、多梳蛋白家族(PcG)蛋白复合物的组成部分zeste同源物2增强子(Ezh2)在胰岛β细胞中抑制Ink4a/Arf。衰老胰岛β细胞中Ezh2水平下降,这种损耗与Ink4a/Arf处组蛋白H3三甲基化减少以及p16(INK4a)和p19(Arf)水平增加相吻合。幼年小鼠中β细胞Ezh2的条件性缺失也降低了Ink4a/Arf基因座处的H3三甲基化,导致p16(INK4a)和p19(Arf)过早增加。这些突变小鼠的β细胞增殖和数量减少,胰岛素血症降低,患有轻度糖尿病,通过Ink4a/Arf的种系缺失可挽救这些表型。对照组中用链脲佐菌素破坏β细胞导致Ezh2表达增加,这伴随着适应性β细胞增殖和β细胞数量的重新建立;相比之下,同样处理的突变小鼠未能再生β细胞,导致致命性糖尿病。我们对Ezh2依赖性β细胞增殖的发现揭示了正常β细胞扩张和糖尿病发病机制中β细胞再生失败背后独特的表观遗传机制。