Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA.
Aging Cell. 2013 Dec;12(6):1000-11. doi: 10.1111/acel.12132. Epub 2013 Aug 6.
Tissue regeneration diminishes with age, concurrent with declining hormone levels including growth factors such as insulin-like growth factor-1 (IGF-1). We investigated the molecular basis for such decline in pancreatic β-cells where loss of proliferation occurs early in age and is proposed to contribute to the pathogenesis of diabetes. We studied the regeneration capacity of β-cells in mouse model where PI3K/AKT pathway downstream of insulin/IGF-1 signaling is upregulated by genetic deletion of Pten (phosphatase and tensin homologue deleted on chromosome 10) specifically in insulin-producing cells. In this model, PTEN loss prevents the decline in proliferation capacity in aged β-cells and restores the ability of aged β-cells to respond to injury-induced regeneration. Using several animal and cell models where we can manipulate PTEN expression, we found that PTEN blocks cell cycle re-entry through a novel pathway leading to an increase in p16(ink4a), a cell cycle inhibitor characterized for its role in cellular senescence/aging. A downregulation in p16(ink4a) occurs when PTEN is lost as a result of cyclin D1 induction and the activation of E2F transcription factors. The activation of E2F transcriptional factors leads to methylation of p16(ink4a) promoter, an event that is mediated by the upregulation of polycomb protein, Ezh2. These analyses establish a novel PTEN/cyclin D1/E2F/Ezh2/p16(ink4a) signaling network responsible for the aging process and provide specific evidence for a molecular paradigm that explain how decline in growth factor signals such as IGF-1 (through PTEN/PI3K signaling) may control regeneration and the lack thereof in aging cells.
组织再生随年龄的增长而减少,同时激素水平下降,包括胰岛素样生长因子-1(IGF-1)等生长因子。我们研究了这种胰腺β细胞衰退的分子基础,β细胞在年轻时增殖能力丧失,据推测这与糖尿病的发病机制有关。我们研究了一种小鼠模型中β细胞的再生能力,该模型中胰岛素/IGF-1 信号转导的 PI3K/AKT 途径下游通过在胰岛素产生细胞中特异性缺失 Pten(10 号染色体上的磷酸酶和张力蛋白同源物缺失)而上调。在该模型中,PTEN 的缺失可防止衰老β细胞增殖能力的下降,并恢复衰老β细胞对损伤诱导的再生的反应能力。使用几种可操纵 PTEN 表达的动物和细胞模型,我们发现 PTEN 通过一条新的途径阻止细胞周期再进入,从而导致细胞周期抑制剂 p16(ink4a)增加,p16(ink4a) 因其在细胞衰老/老化中的作用而被特征化。由于 cyclin D1 的诱导和 E2F 转录因子的激活,PTEN 缺失会导致 p16(ink4a)的下调。E2F 转录因子的激活导致 p16(ink4a)启动子的甲基化,该事件由多梳蛋白 Ezh2 的上调介导。这些分析建立了一个新的 PTEN/cyclin D1/E2F/Ezh2/p16(ink4a)信号网络,负责衰老过程,并为分子范式提供了具体证据,解释了 IGF-1 等生长因子信号的下降(通过 PTEN/PI3K 信号)如何控制再生和衰老细胞中缺乏再生的原因。