Geierstanger B H, Kagawa T F, Chen S L, Quigley G J, Ho P S
Department of Biochemistry and Biophysics, Oregon State University, Corvallis 97331-6503.
J Biol Chem. 1991 Oct 25;266(30):20185-91. doi: 10.2210/pdb1d40/pdb.
The single crystal structure of d(m5CGUAm5CG) soaked with copper(II) chloride was solved to atomic (1.3 A) resolution to study the base specificity of copper binding to double-stranded DNA. In the present copper(II) chloride-soaked structure, four crystallographically unique copper(II) complexes were observed bound to five of the six purine bases in the hexamer duplex. Covalent copper(II) binding occurred at N-7 of all four guanine bases and at one of the two adenine bases in the DNA duplex. Copper binding was not observed at the position (Ade4) located in an open solvent channel, whereas the second adenine site (Ade10) shared a complex with a guanine residue (Gua12) of a neighboring symmetry-related hexamer. The coordination geometries and distribution of these copper(II) complexes at the guanine bases in the crystal were comparable to the analogous sites in the isomorphous copper(II) chloride-soaked d(CGCGCG) crystal (Kagawa, T., Geierstanger, B. H., Wang, A. H.-J., and Ho, P.S. (1991) J. Biol. Chem. 266, 20175-20184). Thus, the decreased copper(II) binding affinity for Ade4 was not an artifact of crystal packing, but is intrinsic to the chemical properties of this purine base in duplex DNA. This suggests that the adenine bases in dilute solutions of Z-DNA and more generally other duplex DNA conformations are not susceptible to copper(II) modification. Thus, preferential copper(II) binding at guanine bases over adenine bases in double-stranded DNA may explain the observed specificity of copper(II)-induced oxidative DNA damage near guanine residues (Yamamoto, K., and Kawanishi, S. (1989) J. Biol. Chem. 264, 15435-15440; Sagripanti, J.-L., and Kraemer, K. H. (1989) J. Biol. Chem. 264, 1729-1734). The sharing of a single copper(II) complex by Ade10 and Gua12 of an adjacent hexamer suggests that additional and perhaps specific DNA-DNA interactions, as may be found in the densely packed environment of the nuclear matrix in the cell, may render N-7 of adenine bases prone to copper(II) modification.
通过将浸泡有氯化铜(II)的d(m5CGUAm5CG)单晶结构解析到原子分辨率(1.3 Å),以研究铜与双链DNA结合的碱基特异性。在目前浸泡有氯化铜(II)的结构中,观察到四个晶体学上独特的铜(II)配合物与六聚体双链体中六个嘌呤碱基中的五个结合。共价铜(II)结合发生在DNA双链体中所有四个鸟嘌呤碱基的N-7位以及两个腺嘌呤碱基中的一个上。在开放溶剂通道中的位置(Ade4)未观察到铜结合,而第二个腺嘌呤位点(Ade10)与相邻对称相关六聚体的鸟嘌呤残基(Gua12)共享一个配合物。晶体中这些铜(II)配合物在鸟嘌呤碱基处的配位几何结构和分布与浸泡有氯化铜(II)的同构d(CGCGCG)晶体中的类似位点相当(Kagawa, T., Geierstanger, B. H., Wang, A. H.-J., and Ho, P.S. (1991) J. Biol. Chem. 266, 20175 - 20184)。因此,铜(II)对Ade4的结合亲和力降低不是晶体堆积的假象,而是双链DNA中该嘌呤碱基化学性质所固有的。这表明在Z-DNA稀溶液以及更普遍的其他双链DNA构象中的腺嘌呤碱基不易受到铜(II)修饰。因此,双链DNA中鸟嘌呤碱基比腺嘌呤碱基更易与铜(II)结合,这可能解释了在鸟嘌呤残基附近观察到的铜(II)诱导的氧化性DNA损伤的特异性(Yamamoto, K., and Kawanishi, S. (1989) J. Biol. Chem. 264, 15435 - 15440; Sagripanti, J.-L., and Kraemer, K. H. (1989) J. Biol. Chem. 264, 1729 - 1734)。相邻六聚体的Ade10和Gua12共享一个单一的铜(II)配合物,这表明在细胞中核基质的密集堆积环境中可能存在的额外且可能特定的DNA - DNA相互作用,可能使腺嘌呤碱基的N-7位易于受到铜(II)修饰。