Suppr超能文献

Differential effect of halothane on motor evoked potentials elicited by transcranial electric or magnetic stimulation in the monkey.

作者信息

Sloan Tod, Rogers J

机构信息

Department of Anesthesiology, University of Colorado at Denver, Aurora, CO 80045, USA.

出版信息

J Clin Monit Comput. 2009 Jun;23(3):163-8. doi: 10.1007/s10877-009-9177-9. Epub 2009 Apr 24.

Abstract

OBJECTIVE

Halothane (HAL) is known to depress motor evoked potentials produced by transcranial magnetic (tcMMEP) or transcranial electric (tcEMEP) stimulation. This study was designed to determine if differences existed between tcEMEP and tcMMEP with increasing HAL concentra- tions.

METHODS

tcMMEP and tcEMEP were characterized during 0-2% inspired HAL in 10 adult cynomologous monkeys during a baseline anesthesia with a continuous ketamine infusion. tcEMEP and tcMMEP were assessed by measuring the onset latency (time from stimulation to the initial response), amplitude of the thenar compound action potential response and threshold (relative power required to elicit a response). Cortical stimulation was accomplished using a Cadwell MES-10 (tcMMEP) and Digitimer Dl80 (tcEMEP).

RESULTS

The baseline (no HAL) onset latency for tcEMEP (10.68 ms) was significantly shorter than that of tcMMEP (12.28 ms) (P < 0.05). The amplitudes (7,916, 4,858 microV, respectively) were not significantly different (P > 0.112). The onset latency increased and amplitude decreased for both techniques (no significant difference between tcEMEP and tcMMEP) with increase in HAL. All animals lost their responses below 2% HAL. In each animal the tcMMEP was lost at a HAL concentration below or equal to that for tcEMEP. T The ED(50) (where 50% of the animals lost the response) was significantly different between tcMMEP (0.66% HAL) and tcEMEP (1.04% HAL) (P < 0.05). The relative threshold gradually increased for tcEMEP and abruptly increased above 0.4% HAL for tcMMEP.

CONCLUSIONS

These differences in sensitivity to HAL are consistent with other studies with intravenous anesthesia and are consistent with the known difference in the physiological mechanisms by which magnetic and electrical stimulation activates the motor cortex.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验