Suppr超能文献

细菌铁蛋白介导铁矿化的结构基础。

Structural basis for iron mineralization by bacterioferritin.

作者信息

Crow Allister, Lawson Tamara L, Lewin Allison, Moore Geoffrey R, Le Brun Nick E

机构信息

Centre for Molecular and Structural Biochemistry, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, UK.

出版信息

J Am Chem Soc. 2009 May 20;131(19):6808-13. doi: 10.1021/ja8093444.

Abstract

Ferritin proteins function to detoxify, solubilize and store cellular iron by directing the synthesis of a ferric oxyhydroxide mineral solubilized within the protein's central cavity. Here, through the application of X-ray crystallographic and kinetic methods, we report significant new insight into the mechanism of mineralization in a bacterioferritin (BFR). The structures of nonheme iron-free and di-Fe(2+) forms of BFR showed that the intrasubunit catalytic center, known as the ferroxidase center, is preformed, ready to accept Fe(2+) ions with little or no reorganization. Oxidation of the di-Fe(2+) center resulted in a di-Fe(3+) center, with bridging electron density consistent with a mu-oxo or hydro bridged species. The mu-oxo bridged di-Fe(3+) center appears to be stable, and there is no evidence that Fe(3+)species are transferred into the core from the ferroxidase center. Most significantly, the data also revealed a novel Fe(2+) binding site on the inner surface of the protein, lying approximately 10 A directly below the ferroxidase center, coordinated by only two residues, His46 and Asp50. Kinetic studies of variants containing substitutions of these residues showed that the site is functionally important. In combination, the data support a model in which the ferroxidase center functions as a true catalytic cofactor, rather than as a pore for the transfer of iron into the central cavity, as found for eukaryotic ferritins. The inner surface iron site appears to be important for the transfer of electrons, derived from Fe(2+) oxidation in the cavity, to the ferroxidase center. Bacterioferritin may represent an evolutionary link between ferritins and class II di-iron proteins not involved in iron metabolism.

摘要

铁蛋白通过引导在蛋白质中心腔内溶解的氢氧化铁矿物的合成,发挥对细胞内铁进行解毒、溶解和储存的功能。在此,我们通过应用X射线晶体学和动力学方法,报告了对细菌铁蛋白(BFR)矿化机制的重要新见解。无血红素铁和二价铁(Fe(2+))形式的BFR结构表明,亚基内催化中心(即铁氧化酶中心)已预先形成,几乎无需或无需重新组织即可接受Fe(2+)离子。二价铁(Fe(2+))中心的氧化产生了一个二价铁(Fe(3+))中心,其桥连电子密度与μ-氧或氢桥连物种一致。μ-氧桥连的二价铁(Fe(3+))中心似乎是稳定的,没有证据表明Fe(3+)物种从铁氧化酶中心转移到核心中。最显著的是,数据还揭示了蛋白质内表面上一个新的Fe(2+)结合位点,它位于铁氧化酶中心正下方约10埃处,仅由两个残基His46和Asp50配位。对含有这些残基替代的变体的动力学研究表明,该位点具有重要功能。综合来看,这些数据支持了一个模型,即铁氧化酶中心作为一个真正的催化辅因子发挥作用,而不是像真核铁蛋白那样作为铁转移到中心腔的通道。内表面铁位点似乎对于将腔内Fe(2+)氧化产生的电子转移到铁氧化酶中心很重要。细菌铁蛋白可能代表了铁蛋白与不参与铁代谢的II类双铁蛋白之间的进化联系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验