Ralph N. Adams Institute for Bioanalytical Chemistry and Department of Chemistry, University of Kansas, Multidisciplinary Research Building, 2030 Becker Drive, Room 220 E, Lawrence, Kansas 66047, USA.
Biochemistry. 2010 Feb 16;49(6):1160-75. doi: 10.1021/bi9015204.
The structure of recombinant Pseudomonas aeruginosa bacterioferritin B (Pa BfrB) has been determined from crystals grown from protein devoid of core mineral iron (as-isolated) and from protein mineralized with approximately 600 iron atoms (mineralized). Structures were also obtained from crystals grown from mineralized BfrB after they had been soaked in an FeSO(4) solution (Fe soak) and in separate experiments after they had been soaked in an FeSO(4) solution followed by a soak in a crystallization solution (double soak). Although the structures consist of a typical bacterioferritin fold comprised of a nearly spherical 24-mer assembly that binds 12 heme molecules, comparison of microenvironments observed in the distinct structures provided interesting insights. The ferroxidase center in the as-isolated, mineralized, and double-soak structures is empty. The ferroxidase ligands (except His130) are poised to bind iron with minimal conformational changes. The His130 side chain, on the other hand, must rotate toward the ferroxidase center to coordinate iron. In comparison, the structure obtained from crystals soaked in an FeSO(4) solution displays a fully occupied ferroxidase center and iron bound to the internal, Fe((in)), and external, Fe((out)), surfaces of Pa BfrB. The conformation of His130 in this structure is rotated toward the ferroxidase center and coordinates an iron ion. The structures also revealed a pore on the surface of Pa BfrB that likely serves as a port of entry for Fe(2+) to the ferroxidase center. On its opposite end, the pore is capped by the side chain of His130 when it adopts its "gate-closed" conformation that enables coordination to a ferroxidase iron. A change to its "gate-open", noncoordinative conformation creates a path for the translocation of iron from the ferroxidase center to the interior cavity. These structural observations, together with findings obtained from iron incorporation measurements in solution, suggest that the ferroxidase pore is the dominant entry route for the uptake of iron by Pa BfrB. These findings, which are clearly distinct from those made with Escherichia coli Bfr [Crow, A. C., Lawson, T. L., Lewin, A., Moore, G. R., and Le Brun, N. E. (2009) J. Am. Chem. Soc. 131, 6808-6813], indicate that not all bacterioferritins operate in the same manner.
重组铜绿假单胞菌菌铁蛋白 B(Pa BfrB)的结构已从不含核心矿物质铁的蛋白质(原始)和用大约 600 个铁原子矿化的蛋白质(矿化)中生长的晶体中确定。还从用 FeSO 4 溶液浸泡(Fe 浸泡)后的矿化 BfrB 晶体和单独的实验中获得了在 FeSO 4 溶液浸泡后再用结晶溶液浸泡(双重浸泡)后的晶体结构。尽管这些结构由典型的菌铁蛋白折叠组成,由近球形的 24 聚体组装体组成,结合了 12 个血红素分子,但观察到的微环境的比较提供了有趣的见解。原始、矿化和双重浸泡结构中的亚铁氧化酶中心为空。亚铁氧化酶配体(除 His130 外)准备以最小的构象变化结合铁。另一方面,His130 侧链必须向亚铁氧化酶中心旋转以配位铁。相比之下,从用 FeSO 4 溶液浸泡的晶体中获得的结构显示出完全占据的亚铁氧化酶中心和结合到 Pa BfrB 的内部、Fe((in))和外部、Fe((out))表面的铁。该结构中 His130 的构象向亚铁氧化酶中心旋转并配位一个铁离子。这些结构还揭示了 Pa BfrB 表面上的一个孔,该孔可能作为 Fe(2+)进入亚铁氧化酶中心的入口。在另一端,当 His130 侧链采用使其能够与亚铁氧化酶铁配位的“门关闭”构象时,该孔被其封闭。向其“门打开”、非配位构象的转变为铁从亚铁氧化酶中心到内部腔的易位创建了一条路径。这些结构观察结果与溶液中铁掺入测量的结果一起表明,亚铁氧化酶孔是 Pa BfrB 摄取铁的主要入口途径。这些发现与大肠杆菌 Bfr 的发现明显不同[Crow,A.C.,Lawson,T.L.,Lewin,A.,Moore,G.R.和 Le Brun,N.E.(2009)J. Am. Chem. Soc. 131,6808-6813],表明并非所有菌铁蛋白都以相同的方式运作。