Avelar A T, Bazeia D, Cardoso W B
Instituto de Física, Universidade Federal de Goiás, 74.001-970, Goiânia Goiás, Brazil.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 Feb;79(2 Pt 2):025602. doi: 10.1103/PhysRevE.79.025602. Epub 2009 Feb 24.
This work deals with soliton solutions of the nonlinear Schrödinger equation with cubic and quintic nonlinearities. We extend the procedure put forward in a recent paper [J. Belmonte-Beitia, Phys. Rev. Lett. 100, 164102 (2008)], and we solve the equation in the presence of a linear background and cubic and quintic interactions which are modulated in space and time. As a result, we show how a simple parameter can be used to generate brightlike or darklike localized nonlinear waves which oscillate in several distinct ways, driven by the space and time dependence of the parameters that control the trapping potential and the cubic and quintic nonlinearities.
这项工作研究了具有三次和五次非线性的非线性薛定谔方程的孤子解。我们扩展了最近一篇论文[J. 贝尔蒙特 - 贝蒂亚,《物理评论快报》100, 164102 (2008)]中提出的方法,并求解了存在线性背景以及在空间和时间上调制的三次和五次相互作用情况下的方程。结果,我们展示了如何使用一个简单参数来生成类亮或类暗的局域非线性波,这些波以几种不同方式振荡,由控制捕获势以及三次和五次非线性的参数的空间和时间依赖性驱动。