Suppr超能文献

随机无环网络

Random acyclic networks.

作者信息

Karrer Brian, Newman M E J

机构信息

Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

Phys Rev Lett. 2009 Mar 27;102(12):128701. doi: 10.1103/PhysRevLett.102.128701. Epub 2009 Mar 23.

Abstract

Directed acyclic graphs make up a fundamental class of networks that includes citation networks, food webs, and family trees, among others. Here we define a random graph model for directed acyclic graphs and give solutions for a number of the model's properties, including connection probabilities and component sizes, as well as a fast algorithm for simulating the model on a computer. We compare the predictions of the model to a real-world network of citations between physics papers and find surprisingly good agreement, suggesting that the structure of the real network may be quite well described by the random graph.

摘要

有向无环图构成了一类基本的网络,其中包括引用网络、食物网和家族树等。在这里,我们定义了一种有向无环图的随机图模型,并给出了该模型的一些属性的解决方案,包括连接概率和组件大小,以及一种在计算机上模拟该模型的快速算法。我们将该模型的预测与物理论文之间的真实引用网络进行比较,发现惊人的良好一致性,这表明随机图可能很好地描述了真实网络的结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验