Department of Physics, The Pennsylvania State University, University Park, PA 16802-6300;
Department of Physics, The Pennsylvania State University, University Park, PA 16802-6300.
Proc Natl Acad Sci U S A. 2017 Jul 11;114(28):7234-7239. doi: 10.1073/pnas.1617387114. Epub 2017 Jun 27.
What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.
我们可以仅从系统的基础网络结构中学到什么来控制一个系统?在这里,我们采用了一种最近开发的框架来控制由广泛的非线性动力学模型所控制的网络,这些模型包括生物、技术和社会过程的主要动态模型。这种基于反馈的框架提供了可实现的节点覆盖,无论特定的功能形式和系统参数如何,都可以引导系统朝着任何其自然的长期动态行为。我们在几个真实网络上使用这个框架,确定了预测节点覆盖的拓扑特征,并将其预测与控制理论中的结构可控性进行了比较。最后,我们展示了这个框架在基因调控网络的动态模型中的适用性,并确定了在一般情况下控制所必需的节点覆盖,但在特定模型实例中则不需要。