Suppr超能文献

分子钴肟催化剂催化质子水溶液的可见光驱动产氢

Visible light-driven hydrogen production from aqueous protons catalyzed by molecular cobaloxime catalysts.

作者信息

Du Pingwu, Schneider Jacob, Luo Genggeng, Brennessel William W, Eisenberg Richard

机构信息

Department of Chemistry, University of Rochester, Rochester, New York 14627, USA.

出版信息

Inorg Chem. 2009 Jun 1;48(11):4952-62. doi: 10.1021/ic900389z.

Abstract

A series of cobaloxime complexes([Co(dmgH)(2)pyCl] (1), [Co(dmgH)(2)(4-COOMe-py)Cl] (2), [Co(dmgH)(2)(4-Me(2)N-py)Cl] (3), [Co(dmgH)(dmgH(2))Cl(2)] (4), Co(dmgH)(2)(py)(2) (5), [Co(dmgH)(2)(P(n-Bu)(3))Cl] (6), and [Co(dmgBF(2))(2)(OH(2))(2)] (7), where dmgH = dimethylglyoximate monoanion, dmgH(2) = dimethylglyoxime, dmgBF(2) = (difluoroboryl)dimethylglyoximate anion, and py = pyridinewere synthesized and studied as molecular catalysts for the photogeneration of hydrogen from systems containing a Pt terpyridyl acetylide chromophore and triethanolamine (TEOA) as a sacrificial donor in aqueous acetonitrile. All cobaloxime complexes 1-7 are able to quench the luminescence of the Pt(II) chromophore [Pt(ttpy)(CCPh)]ClO(4) (C1) (ttpy = 4'-p-tolyterpyridine). The most effective electron acceptor for hydrogen evolution is found to be complex 2, which provides the fastest luminescence quenching rate constant for C1 of 1.7 x 10(9) M(-1) s(-1). The rate of hydrogen evolution depends on many factors, including the stability of the catalysts, the driving force for proton reduction, the relative and absolute concentrations of system components (TEOA, Co molecular catalyst, and sensitizer), and the ratio of MeCN/water in the reaction medium. For example, when the concentration of TEOA increases, the rate of H(2) photogeneration is faster and the induction period is shorter. Colloidal cobalt experiments and mercury tests were run to verify that the system is homogeneous and that catalysis does not occur from in situ generated colloidal particles during photolysis. The most effective system examined to date consists of the chromophore C1 (1.1 x 10(-5) M), TEOA (0.27 M), and catalyst complex 1 (2.0 x 10(-4) M) in a MeCN/water mixture (24:1 v/v, total 25 mL); this system has produced approximately 2150 turnovers of H(2) after only 10 h of photolysis with lambda > 410 nm.

摘要

合成了一系列钴肟配合物([Co(dmgH)(2)pyCl] (1)、[Co(dmgH)(2)(4-COOMe-py)Cl] (2)、[Co(dmgH)(2)(4-Me(2)N-py)Cl] (3)、[Co(dmgH)(dmgH(2))Cl(2)] (4)、Co(dmgH)(2)(py)(2) (5)、[Co(dmgH)(2)(P(n-Bu)(3))Cl] (6) 和 [Co(dmgBF(2))(2)(OH(2))(2)] (7),其中dmgH = 二甲基乙二肟单阴离子,dmgH(2) = 二甲基乙二肟,dmgBF(2) = (二氟硼基)二甲基乙二肟阴离子,py = 吡啶),并将其作为分子催化剂进行研究,用于在乙腈水溶液中,从含有铂三联吡啶乙炔发色团和三乙醇胺(TEOA)作为牺牲供体的体系中光催化产氢。所有钴肟配合物1 - 7都能够淬灭铂(II)发色团[Pt(ttpy)(CCPh)]ClO(4)(C1)(ttpy = 4'-对甲苯基三联吡啶)的发光。发现用于析氢的最有效的电子受体是配合物2,它为C1提供了最快的发光淬灭速率常数,为1.7×10(9) M(-1) s(-1)。析氢速率取决于许多因素,包括催化剂的稳定性、质子还原的驱动力、体系组分(TEOA、钴分子催化剂和敏化剂)的相对和绝对浓度以及反应介质中乙腈/水的比例。例如,当TEOA的浓度增加时,H(2)的光生速率更快且诱导期更短。进行了胶体钴实验和汞测试,以验证该体系是均相体系,并且在光解过程中不会由原位生成的胶体颗粒发生催化作用。迄今为止研究的最有效的体系由发色团C1(1.1×10(-5) M)、TEOA(0.27 M)和催化剂配合物1(2.0×10(-4) M)在乙腈/水混合物(24:1 v/v,总体积25 mL)中组成;该体系在λ>

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验