Suppr超能文献

基于地统计学、遥感和地理信息系统的干旱半干旱生态系统土地适宜性评价方法。

An approach for land suitability evaluation using geostatistics, remote sensing, and geographic information system in arid and semiarid ecosystems.

机构信息

Soil Science Department, College of Agriculture, Shiraz University, Shiraz, Iran.

出版信息

Environ Monit Assess. 2010 May;164(1-4):501-11. doi: 10.1007/s10661-009-0909-6. Epub 2009 Apr 29.

Abstract

This study was undertaken to incorporate geostatistics, remote sensing, and geographic information system (GIS) technologies to improve the qualitative land suitability assessment in arid and semiarid ecosystems of Arsanjan plain, southern Iran. The primary data were obtained from 85 soil samples collected from tree depths (0-30, 30-60, and 60-90 cm); the secondary information was acquired from the remotely sensed data from the linear imaging self-scanner (LISS-III) receiver of the IRS-P6 satellite. Ordinary kriging and simple kriging with varying local means (SKVLM) methods were used to identify the spatial dependency of soil important parameters. It was observed that using the data collected from the spectral values of band 1 of the LISS-III receiver as the secondary variable applying the SKVLM method resulted in the lowest mean square error for mapping the pH and electrical conductivity (ECe) in the 0-30-cm depth. On the other hand, the ordinary kriging method resulted in a reliable accuracy for the other soil properties with moderate to strong spatial dependency in the study area for interpolation in the unstamped points. The parametric land suitability evaluation method was applied on the density points (150 x 150 m(2)) instead of applying on the limited representative profiles conventionally, which were obtained by the kriging or SKVLM methods. Overlaying the information layers of the data was used with the GIS for preparing the final land suitability evaluation. Therefore, changes in land characteristics could be identified in the same soil uniform mapping units over a very short distance. In general, this new method can easily present the squares and limitation factors of the different land suitability classes with considerable accuracy in arbitrary land indices.

摘要

本研究采用地统计学、遥感和地理信息系统 (GIS) 技术,以提高伊朗南部阿尔山詹平原干旱和半干旱生态系统的定性土地适宜性评估质量。主要数据来自从树木深度(0-30、30-60 和 60-90 厘米)采集的 85 个土壤样本;次要信息来自 IRS-P6 卫星线性成像自扫描 (LISS-III) 接收器的遥感数据。普通克里金和具有变化局部均值的简单克里金 (SKVLM) 方法用于确定土壤重要参数的空间相关性。结果表明,使用 LISS-III 接收器波段 1 的光谱值作为二次变量,应用 SKVLM 方法可以在 0-30 厘米深度内获得 pH 和电导率 (ECe) 的映射的最低均方误差。另一方面,普通克里金方法对于研究区域中具有中等至强空间相关性的其他土壤特性具有可靠的准确性,可用于未标记点的插值。参数土地适宜性评估方法应用于密度点(150 x 150 m²),而不是传统上通过克里金或 SKVLM 方法获得的有限代表性剖面。通过 GIS 叠加数据信息层用于准备最终的土地适宜性评估。因此,可以在非常短的距离内识别同一土壤均匀制图单元中土地特征的变化。总的来说,这种新方法可以在任意土地指数中以相当高的精度轻松呈现不同土地适宜性类别的正方形和限制因素。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验