Abookasis David, Lay Christopher C, Mathews Marlon S, Linskey Mark E, Frostig Ron D, Tromberg Bruce J
University of California Irvine, Beckman Laser Institute and Medical Clinic, 1002 Health Sciences Road East, Irvine, California 92612, USA.
J Biomed Opt. 2009 Mar-Apr;14(2):024033. doi: 10.1117/1.3116709.
We describe a technique that uses spatially modulated near-infrared (NIR) illumination to detect and map changes in both optical properties (absorption and reduced scattering parameters) and tissue composition (oxy- and deoxyhemoglobin, total hemoglobin, and oxygen saturation) during acute ischemic injury in the rat barrel cortex. Cerebral ischemia is induced using an open vascular occlusion technique of the middle cerebral artery (MCA). Diffuse reflected NIR light (680 to 980 nm) from the left parietal somatosensory cortex is detected by a CCD camera before and after MCA occlusion. Monte Carlo simulations are used to analyze the spatial frequency dependence of the reflected light to predict spatiotemporal changes in the distribution of tissue absorption and scattering properties in the brain. Experimental results from seven rats show a 17+/-4.7% increase in tissue concentration of deoxyhemoglobin and a 45+/-3.1, 23+/-5.4, and 21+/-2.2% decrease in oxyhemoglobin, total hemoglobin concentration and cerebral tissue oxygen saturation levels, respectively, 45 min following induction of cerebral ischemia. An ischemic index (I(isch)=ctHHbctO(2)Hb) reveals an average of more then twofold contrast after MCAo. The wavelength-dependence of the reduced scattering (i.e., scatter power) decreased by 35+/-10.3% after MCA occlusion. Compared to conventional CCD-based intrinsic signal optical imaging (ISOI), the use of structured illumination and model-based analysis allows for generation of separate maps of light absorption and scattering properties as well as tissue hemoglobin concentration. This potentially provides a powerful approach for quantitative monitoring and imaging of neurophysiology and metabolism with high spatiotemporal resolution.
我们描述了一种技术,该技术利用空间调制近红外(NIR)照明来检测和绘制大鼠桶状皮质急性缺血性损伤期间光学特性(吸收和约化散射参数)和组织成分(氧合血红蛋白和脱氧血红蛋白、总血红蛋白以及氧饱和度)的变化。使用大脑中动脉(MCA)开放血管闭塞技术诱导脑缺血。在MCA闭塞前后,通过电荷耦合器件(CCD)相机检测来自左侧顶叶体感皮质的漫反射近红外光(680至980nm)。使用蒙特卡罗模拟分析反射光的空间频率依赖性,以预测脑组织吸收和散射特性分布的时空变化。七只大鼠的实验结果表明,脑缺血诱导45分钟后,脱氧血红蛋白的组织浓度增加了17±4.7%,氧合血红蛋白、总血红蛋白浓度和脑组织氧饱和度水平分别降低了45±3.1%、23±5.4%和21±2.2%。缺血指数(I(isch)=ctHHb/ctO₂Hb)显示MCA闭塞后平均对比度增加了两倍多。MCA闭塞后,约化散射(即散射功率)的波长依赖性降低了35±10.3%。与传统的基于CCD的固有信号光学成像(ISOI)相比,使用结构化照明和基于模型的分析能够生成光吸收和散射特性以及组织血红蛋白浓度的单独图谱。这可能为高时空分辨率的神经生理学和代谢定量监测与成像提供一种强大的方法。