Suppr超能文献

基于MRI特征预测乳腺恶性病变:人工神经网络与逻辑回归技术的比较

Prediction of malignant breast lesions from MRI features: a comparison of artificial neural network and logistic regression techniques.

作者信息

McLaren Christine E, Chen Wen-Pin, Nie Ke, Su Min-Ying

机构信息

Department of Epidemiology, University of California, Irvine, 224 Irvine Hall, Irvine, CA 92697-7550, USA.

出版信息

Acad Radiol. 2009 Jul;16(7):842-51. doi: 10.1016/j.acra.2009.01.029. Epub 2009 May 5.

Abstract

RATIONALE AND OBJECTIVES

Dynamic contrast-enhanced magnetic resonance imaging is a clinical imaging modality for the detection and diagnosis of breast lesions. Analytic methods were compared for diagnostic feature selection and the performance of lesion classification to differentiate between malignant and benign lesions in patients.

MATERIALS AND METHODS

The study included 43 malignant and 28 benign histologically proved lesions. Eight morphologic parameters, 10 gray-level co-occurrence matrix texture features, and 14 Laws texture features were obtained using automated lesion segmentation and quantitative feature extraction. Artificial neural network (ANN) and logistic regression analysis were compared for the selection of the best predictors of malignant lesions among the normalized features.

RESULTS

Using ANN, the final four selected features were compactness, energy, homogeneity, and Law_LS, with an area under the receiver-operating characteristic curve (AUC) of 0.82 and accuracy of 0.76. The diagnostic performance of these four features computed on the basis of logistic regression yielded an AUC of 0.80 (95% confidence interval [CI], 0.688-0.905), similar to that of ANN. The analysis also showed that the odds of a malignant lesion decreased by 48% (95% CI, 25%-92%) for every increase of 1 standard deviation in the Law_LS feature, adjusted for differences in compactness, energy, and homogeneity. Using logistic regression with z-score transformation, a model composed of compactness, normalized radial length entropy, and gray-level sum average was selected, and it had the highest overall accuracy, 0.75, among all models, with an AUC of 0.77 (95% CI, 0.660-0.880). When logistic modeling of transformations using the Box-Cox method was performed, the most parsimonious model with predictors compactness and Law_LS had an AUC of 0.79 (95% CI, 0.672-0.898).

CONCLUSION

The diagnostic performance of models selected by ANN and logistic regression was similar. The analytic methods were found to be roughly equivalent in terms of predictive ability when a small number of variables were chosen. The robust ANN methodology uses a sophisticated nonlinear model, while logistic regression analysis provides insightful information to enhance the interpretation of the model features.

摘要

原理与目的

动态对比增强磁共振成像(DCE-MRI)是一种用于检测和诊断乳腺病变的临床成像方式。本研究比较了多种分析方法,用于选择诊断特征以及区分患者乳腺病变良恶性的分类性能。

材料与方法

本研究纳入了43例经组织学证实的恶性病变和28例良性病变。通过自动病变分割和定量特征提取,获得了8个形态学参数、10个灰度共生矩阵纹理特征以及14个Laws纹理特征。比较了人工神经网络(ANN)和逻辑回归分析,以从标准化特征中选择恶性病变的最佳预测指标。

结果

使用人工神经网络,最终选择的四个特征为紧密度、能量、均匀性和Law_LS,其受试者工作特征曲线下面积(AUC)为0.82,准确率为0.76。基于逻辑回归计算的这四个特征的诊断性能,AUC为0.80(95%置信区间[CI],0.688 - 0.905),与人工神经网络相似。分析还表明,在调整紧密度、能量和均匀性差异后,Law_LS特征每增加1个标准差,恶性病变的几率降低48%(95% CI,25% - 92%)。使用带z分数变换的逻辑回归,选择了一个由紧密度、归一化径向长度熵和灰度总和平均值组成的模型,该模型在所有模型中总体准确率最高,为0.75,AUC为0.77(95% CI,0.660 - 0.880)。当使用Box-Cox方法进行变换的逻辑建模时,具有预测指标紧密度和Law_LS的最简模型AUC为0.79(95% CI,0.672 - 0.898)。

结论

人工神经网络和逻辑回归选择的模型诊断性能相似。当选择少量变量时,发现这些分析方法在预测能力方面大致相当。强大的人工神经网络方法使用复杂的非线性模型,而逻辑回归分析提供有洞察力的信息以增强对模型特征的解释。

相似文献

2
Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI.
Acad Radiol. 2008 Dec;15(12):1513-25. doi: 10.1016/j.acra.2008.06.005.
4
Multimodality computer-aided breast cancer diagnosis with FFDM and DCE-MRI.
Acad Radiol. 2010 Sep;17(9):1158-67. doi: 10.1016/j.acra.2010.04.015.
5
Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis.
Magn Reson Imaging. 2014 Apr;32(3):197-205. doi: 10.1016/j.mri.2013.12.002. Epub 2013 Dec 17.
7
Characterization of spatiotemporal changes for the classification of dynamic contrast-enhanced magnetic-resonance breast lesions.
Artif Intell Med. 2013 Jun;58(2):101-14. doi: 10.1016/j.artmed.2013.03.002. Epub 2013 Mar 30.

引用本文的文献

1
The top 100 most-cited articles on artificial intelligence in breast radiology: a bibliometric analysis.
Insights Imaging. 2024 Dec 12;15(1):297. doi: 10.1186/s13244-024-01869-4.
3
A deep learning model based on MRI for prediction of vessels encapsulating tumour clusters and prognosis in hepatocellular carcinoma.
Abdom Radiol (NY). 2024 Apr;49(4):1074-1083. doi: 10.1007/s00261-023-04141-3. Epub 2024 Jan 4.
4
Vascularity and Dynamic Contrast-Enhanced Breast Magnetic Resonance Imaging.
Front Radiol. 2021 Dec 9;1:735567. doi: 10.3389/fradi.2021.735567. eCollection 2021.
5
Prediction of histologic types in solid lung lesions using preoperative contrast-enhanced CT.
Eur Radiol. 2023 Jul;33(7):4734-4745. doi: 10.1007/s00330-023-09432-3. Epub 2023 Feb 1.
6
Classification Performance of Neural Networks Versus Logistic Regression Models: Evidence From Healthcare Practice.
Cureus. 2022 Feb 21;14(2):e22443. doi: 10.7759/cureus.22443. eCollection 2022 Feb.
7
Quantification and Classification of Contrast Enhanced Ultrasound Breast Cancer Data: A Preliminary Study.
Diagnostics (Basel). 2022 Feb 6;12(2):425. doi: 10.3390/diagnostics12020425.
8
Association between breast cancer's prognostic factors and 3D textural features of non-contrast-enhanced weighted breast MRI.
Br J Radiol. 2022 Feb 1;95(1130):20210702. doi: 10.1259/bjr.20210702. Epub 2021 Dec 8.
9
Radiomics in breast MRI: current progress toward clinical application in the era of artificial intelligence.
Radiol Med. 2022 Jan;127(1):39-56. doi: 10.1007/s11547-021-01423-y. Epub 2021 Oct 26.
10
Texture analysis of dorsal striatum in functional neurological (conversion) disorder.
Brain Imaging Behav. 2022 Apr;16(2):596-607. doi: 10.1007/s11682-021-00527-3. Epub 2021 Sep 2.

本文引用的文献

1
Quantitative analysis of lesion morphology and texture features for diagnostic prediction in breast MRI.
Acad Radiol. 2008 Dec;15(12):1513-25. doi: 10.1016/j.acra.2008.06.005.
2
A risk model for prediction of lung cancer.
J Natl Cancer Inst. 2007 May 2;99(9):715-26. doi: 10.1093/jnci/djk153.
5
Risk factor identification and mortality prediction in cardiac surgery using artificial neural networks.
J Thorac Cardiovasc Surg. 2006 Jul;132(1):12-9. doi: 10.1016/j.jtcvs.2005.12.055.
6
Breast lesion analysis of shape technique: semiautomated vs. manual morphological description.
J Magn Reson Imaging. 2006 Apr;23(4):493-8. doi: 10.1002/jmri.20541.
8
Predicting breast cancer survivability: a comparison of three data mining methods.
Artif Intell Med. 2005 Jun;34(2):113-27. doi: 10.1016/j.artmed.2004.07.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验