基于 FFDM 和 DCE-MRI 的多模态计算机辅助乳腺癌诊断。
Multimodality computer-aided breast cancer diagnosis with FFDM and DCE-MRI.
机构信息
Department of Radiology, The University of Chicago, Chicago, IL 60637, USA.
出版信息
Acad Radiol. 2010 Sep;17(9):1158-67. doi: 10.1016/j.acra.2010.04.015.
RATIONALE AND OBJECTIVES
To investigate a multimodality computer-aided diagnosis (CAD) scheme that combines image information from full-field digital mammography (FFDM) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for computerized breast cancer classification.
MATERIALS AND METHODS
From a retrospective FFDM database with 432 lesions (255 malignant, 177 benign) and a retrospective DCE-MRI database including 476 lesions (347 malignant, 129 benign), we constructed a multimodality dataset of 213 lesions (168 malignant, 45 benign). Each lesion was present on both FFDM and DCE-MRI images and deemed to be a difficult case given the necessity of having both clinical imaging exams. Using a manually indicated lesion location (ie, a seed point on FFDM images or a region of interest on DCE-MRI images, the computer automatically segmented the mass lesions and extracted lesion features). A subset of features was selected using linear stepwise feature selection and merged by a Bayesian artificial neural network to yield an estimate of the probability of malignancy. Receiver operating characteristic (ROC) analysis was used to evaluate the performance of the selected features in distinguishing between malignant and benign lesions.
RESULTS
With leave-one-lesion-out cross-validation on the multimodality dataset, the mammography-only features yielded an area under the ROC curve (AUC) of 0.74 +/- 0.04, and the DCE-MRI-only features yielded an AUC of 0.78 +/- 0.04. The combination of these two modalities, which included a spiculation feature from mammography and two kinetic features from DCE-MRI, yielded an AUC of 0.87 +/- 0.03. The improvement of combining multimodality information was statistically significant as compared to the use of single modality information alone.
CONCLUSIONS
A CAD scheme that combines features extracted from FFDM and DCE-MRI images may be advantageous to single-modality CAD in the task of differentiating between malignant and benign lesions.
背景与目的
本研究旨在探讨一种基于全数字化乳腺摄影术(FFDM)和动态对比增强磁共振成像(DCE-MRI)的多模态计算机辅助诊断(CAD)方案,以实现计算机辅助乳腺癌分类。
材料与方法
从包含 432 个病灶(255 个恶性,177 个良性)的回顾性 FFDM 数据库和包含 476 个病灶(347 个恶性,129 个良性)的回顾性 DCE-MRI 数据库中,我们构建了一个包含 213 个病灶(168 个恶性,45 个良性)的多模态数据集。每个病灶均在 FFDM 和 DCE-MRI 图像上出现,并且由于需要进行这两种临床影像学检查,因此被认为是一个困难病例。使用手动指示的病灶位置(即 FFDM 图像上的种子点或 DCE-MRI 图像上的感兴趣区域),计算机自动对肿块病灶进行分割并提取病灶特征。通过线性逐步特征选择选择了一部分特征,并通过贝叶斯人工神经网络进行合并,以得出恶性肿瘤的概率估计。使用接收者操作特征(ROC)分析评估所选特征在区分恶性和良性病变方面的性能。
结果
在多模态数据集中采用单病灶外验证,单独使用乳腺摄影术特征的 ROC 曲线下面积(AUC)为 0.74 +/- 0.04,单独使用 DCE-MRI 特征的 AUC 为 0.78 +/- 0.04。这两种模式的组合包括来自乳腺摄影术的一个毛刺特征和来自 DCE-MRI 的两个动力学特征,其 AUC 为 0.87 +/- 0.03。与单独使用单模态信息相比,组合多模态信息的改善具有统计学意义。
结论
与单独使用单模态 CAD 相比,联合 FFDM 和 DCE-MRI 图像特征的 CAD 方案可能有利于鉴别良恶性病变。
相似文献
Acad Radiol. 2010-9
引用本文的文献
J Med Imaging (Bellingham). 2022-5
Nat Rev Cancer. 2022-2
World J Methodol. 2014-6-26
Acad Radiol. 2013-5-3
本文引用的文献
CA Cancer J Clin. 2009
IEEE Trans Image Process. 2001
Med Phys. 2007-11
Med Image Comput Comput Assist Interv. 2007
Radiology. 2008-1