Suppr超能文献

单眼视觉剥夺对猫18区膝状体皮质神经支配的影响。

Effects of monocular visual deprivation on geniculocortical innervation of area 18 in cat.

作者信息

Friedlander M J, Martin K A, Wassenhove-McCarthy D

机构信息

Neurobiology Research Center, University of Alabama, Birmingham 35294.

出版信息

J Neurosci. 1991 Oct;11(10):3268-88. doi: 10.1523/JNEUROSCI.11-10-03268.1991.

Abstract

The effects of long-term monocular visual deprivation (MD) on the structure of the terminal arborizations of individual Y-type geniculocortical axons was studied in the cat's cortical area 18. Physiologically classified axons were filled with HRP by intracellular injection, and the three-dimensional distribution of the axons' terminal arborizations was quantified. Individual boutons observed at the light microscope (LM) level were verified as sites of synaptic contact by correlated light and electron microscopy (EM). Single boutons were serially sectioned and reconstructed for subsequent three-dimensional analysis. The arborizations of 17 Y-axons [6 normal (N), 6 nondeprived (ND), and 5 deprived (D)] were analyzed at the LM level, and 372 boutons (104 N, 129 ND, and 139 D) were fully reconstructed from serial sections for analysis at the EM level. MD leads to an expansion in the size of ND arborizations and a variable reduction in the size of the D arbors, which also have a higher bouton density than ND arborizations. ND axons form ectopic synapses, contacting proportionally more dendritic shafts than N or D boutons, and form more synapses per bouton, on average, than either N or D boutons. Compared to ND and N boutons, boutons of D axons are smaller, have fewer mitochondria, generally form synapses on a single target (usually dendritic spines), and occasionally make no synaptic contacts. The structural changes in the extent of individual axon arborizations may be the basis for change in ocular dominance column size with MD. However, the higher bouton density and variable effect on the extent of D axon arborization size suggest that considerable geniculocortical innervation from the deprived eye remains intact. The change in target preference for ND axons suggests that instead of a direct competition for postsynaptic sites by the developing geniculocortical axons innervated by the two retinas, the ND axon arborizations expand to invade synaptic space not normally occupied in such high proportion in the normal cortex. The severe changes in individual boutons following MD indicate that arborization size alone is not the only structural substrate underlying the altered responses of cortical neurons; changes in synaptic distribution onto target neurons may also play a role.

摘要

在猫的18区研究了长期单眼视觉剥夺(MD)对单个Y型膝状体皮质轴突终末分支结构的影响。通过细胞内注射用辣根过氧化物酶(HRP)填充生理分类的轴突,并对轴突终末分支的三维分布进行量化。在光学显微镜(LM)水平观察到的单个终扣,通过相关的光学和电子显微镜(EM)确认为突触接触位点。对单个终扣进行连续切片和重建,以便进行后续的三维分析。在LM水平分析了17条Y轴突[6条正常(N)、6条未剥夺(ND)和5条剥夺(D)]的分支,从连续切片中完全重建了372个终扣(104个N、129个ND和139个D),用于EM水平的分析。MD导致ND分支大小扩大,D分支大小可变减小,且D分支的终扣密度高于ND分支。ND轴突形成异位突触,与树突干的接触比例比N或D终扣更高,并且平均每个终扣形成的突触比N或D终扣更多。与ND和N终扣相比,D轴突的终扣更小,线粒体更少,通常在单个靶点(通常是树突棘)上形成突触,偶尔不形成突触接触。单个轴突分支范围的结构变化可能是MD导致眼优势柱大小改变的基础。然而,较高的终扣密度以及对D轴突分支大小范围的可变影响表明,来自剥夺眼的大量膝状体皮质神经支配仍然完好无损。ND轴突对靶点偏好的变化表明,不是由两个视网膜支配的发育中的膝状体皮质轴突对突触后位点进行直接竞争,而是ND轴突分支扩展以侵入在正常皮质中通常不会有如此高比例占据的突触空间。MD后单个终扣的严重变化表明,仅分支大小不是皮质神经元反应改变的唯一结构基础;突触在靶神经元上的分布变化也可能起作用。

相似文献

1
Effects of monocular visual deprivation on geniculocortical innervation of area 18 in cat.
J Neurosci. 1991 Oct;11(10):3268-88. doi: 10.1523/JNEUROSCI.11-10-03268.1991.
2
Development of Y-axon innervation of cortical area 18 in the cat.
J Physiol. 1989 Sep;416:183-213. doi: 10.1113/jphysiol.1989.sp017756.
3
Synaptic density in geniculocortical afferents remains constant after monocular deprivation in the cat.
J Neurosci. 1999 Dec 15;19(24):10829-42. doi: 10.1523/JNEUROSCI.19-24-10829.1999.
5
Synaptic connections of physiologically identified geniculocortical axons in kitten cortical area 17.
Proc Biol Sci. 1992 Dec 22;250(1329):187-94. doi: 10.1098/rspb.1992.0148.
9
Effects of monocular deprivation on geniculocortical synapses in the cat.
J Comp Neurol. 1984 Jan 10;222(2):166-76. doi: 10.1002/cne.902220203.
10
Fine structural morphology of identified X- and Y-cells in the cat's lateral geniculate nucleus.
Proc R Soc Lond B Biol Sci. 1984 Jun 22;221(1225):411-36. doi: 10.1098/rspb.1984.0042.

引用本文的文献

1
Multi-synaptic boutons are a feature of CA1 hippocampal connections in the stratum oriens.
Cell Rep. 2023 May 30;42(5):112397. doi: 10.1016/j.celrep.2023.112397. Epub 2023 Apr 18.
2
3D Ultrastructure of Synaptic Inputs to Distinct GABAergic Neurons in the Mouse Primary Visual Cortex.
Cereb Cortex. 2021 Mar 31;31(5):2610-2624. doi: 10.1093/cercor/bhaa378.
3
Structural dynamics and stability of corticocortical and thalamocortical axon terminals during motor learning.
PLoS One. 2020 Jun 19;15(6):e0234930. doi: 10.1371/journal.pone.0234930. eCollection 2020.
4
Experience-Dependent Synaptic Plasticity in V1 Occurs without Microglial CX3CR1.
J Neurosci. 2017 Nov 1;37(44):10541-10553. doi: 10.1523/JNEUROSCI.2679-16.2017. Epub 2017 Sep 26.
7
Structure, Distribution, and Function of Neuronal/Synaptic Spinules and Related Invaginating Projections.
Neuromolecular Med. 2015 Sep;17(3):211-40. doi: 10.1007/s12017-015-8358-6. Epub 2015 May 26.
8
Evidence for Alzheimer's disease-linked synapse loss and compensation in mouse and human hippocampal CA1 pyramidal neurons.
Brain Struct Funct. 2015 Nov;220(6):3143-65. doi: 10.1007/s00429-014-0848-z. Epub 2014 Jul 17.
9
Adult cortical plasticity following injury: Recapitulation of critical period mechanisms?
Neuroscience. 2014 Dec 26;283:4-16. doi: 10.1016/j.neuroscience.2014.04.029. Epub 2014 May 1.
10
Neuronal projections from V1 to V2 in amblyopia.
J Neurosci. 2012 Feb 22;32(8):2648-56. doi: 10.1523/JNEUROSCI.4799-11.2012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验