Suppr超能文献

热休克蛋白27(hsp27)多聚体大小和分子伴侣功能的磷酸化依赖性

Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function.

作者信息

Hayes David, Napoli Vanessa, Mazurkie Andrew, Stafford Walter F, Graceffa Philip

机构信息

Boston Biomedical Research Institute, Watertown, Massachusetts 02472, USA.

出版信息

J Biol Chem. 2009 Jul 10;284(28):18801-7. doi: 10.1074/jbc.M109.011353. Epub 2009 Apr 30.

Abstract

The molecular chaperone Hsp27 exists as a distribution of large oligomers that are disassembled by phosphorylation at Ser-15, -78, and -82. It is controversial whether the unphosphorylated Hsp27 or the widely used triple Ser-to-Asp phospho-mimic mutant is the more active molecular chaperone in vitro. This question was investigated here by correlating chaperone activity, as measured by the aggregation of reduced insulin or alpha-lactalbumin, with Hsp27 self-association as monitored by analytical ultracentrifugation. Furthermore, because the phospho-mimic is generally assumed to reproduce the phosphorylated molecule, the size and chaperone activity of phosphorylated Hsp27 were compared with that of the phospho-mimic. Hsp27 was triply phosphorylated by MAPKAP-2 kinase, and phosphorylation was tracked by urea-PAGE. An increasing degree of suppression of insulin or alpha-lactalbumin aggregation correlated with a decreasing Hsp27 self-association, which was the least for phosphorylated Hsp27 followed by the mimic followed by the unphosphorylated protein. It was also found that Hsp27 added to pre-aggregated insulin did not reverse aggregation but did inhibit these aggregates from assembling into even larger aggregates. This chaperone activity appears to be independent of Hsp27 phosphorylation. In conclusion, the most active chaperone of insulin and alpha-lactalbumin was the Hsp27 (elongated) dimer, the smallest Hsp27 subunit observed under physiological conditions. Next, the Hsp27 phospho-mimic is only a partial mimic of phosphorylated Hsp27, both in self-association and in chaperone function. Finally, the efficient inhibition of insulin aggregation by Hsp27 dimer led to the proposal of two models for this chaperone activity.

摘要

分子伴侣Hsp27以大的寡聚体形式存在,这些寡聚体在丝氨酸-15、-78和-82位点被磷酸化后会发生解离。在体外,未磷酸化的Hsp27或广泛使用的丝氨酸到天冬氨酸的三重磷酸模拟突变体哪个是更具活性的分子伴侣存在争议。本文通过将还原胰岛素或α-乳白蛋白的聚集所测量的伴侣活性与分析超速离心监测的Hsp27自缔合相关联来研究这个问题。此外,由于通常认为磷酸模拟物能重现磷酸化分子,因此将磷酸化Hsp27的大小和伴侣活性与磷酸模拟物进行了比较。Hsp27被MAPKAP-2激酶三重磷酸化,磷酸化通过尿素-PAGE进行跟踪。胰岛素或α-乳白蛋白聚集的抑制程度增加与Hsp27自缔合减少相关,对于磷酸化的Hsp27、其次是模拟物、然后是未磷酸化的蛋白,自缔合程度依次降低。还发现添加到预聚集胰岛素中的Hsp27不会逆转聚集,但确实会抑制这些聚集体组装成更大的聚集体。这种伴侣活性似乎与Hsp27磷酸化无关。总之,胰岛素和α-乳白蛋白最具活性的伴侣是Hsp27(伸长的)二聚体,这是在生理条件下观察到的最小的Hsp27亚基。其次,Hsp27磷酸模拟物在自缔合和伴侣功能方面都只是磷酸化Hsp27的部分模拟物。最后,Hsp27二聚体对胰岛素聚集的有效抑制导致了关于这种伴侣活性的两种模型的提出。

相似文献

1
Phosphorylation dependence of hsp27 multimeric size and molecular chaperone function.
J Biol Chem. 2009 Jul 10;284(28):18801-7. doi: 10.1074/jbc.M109.011353. Epub 2009 Apr 30.
2
Some properties of human small heat shock protein Hsp20 (HspB6).
Eur J Biochem. 2004 Jan;271(2):291-302. doi: 10.1046/j.1432-1033.2003.03928.x.
3
Self-association and chaperone activity of Hsp27 are thermally activated.
J Biol Chem. 2006 Mar 24;281(12):8169-74. doi: 10.1074/jbc.M512553200. Epub 2006 Jan 25.
4
Phosphomimics destabilize Hsp27 oligomeric assemblies and enhance chaperone activity.
Chem Biol. 2015 Feb 19;22(2):186-95. doi: 10.1016/j.chembiol.2015.01.001.
7
Roles of the N- and C-terminal sequences in Hsp27 self-association and chaperone activity.
Protein Sci. 2012 Jan;21(1):122-33. doi: 10.1002/pro.761. Epub 2011 Dec 7.
9
Evaluating the Effect of Phosphorylation on the Structure and Dynamics of Hsp27 Dimers by Means of Ion Mobility Mass Spectrometry.
Anal Chem. 2017 Dec 19;89(24):13275-13282. doi: 10.1021/acs.analchem.7b03328. Epub 2017 Dec 4.

引用本文的文献

4
Capturing the Conformational Heterogeneity of HSPB1 Chaperone Oligomers at Atomic Resolution.
J Am Chem Soc. 2025 May 7;147(18):15181-15194. doi: 10.1021/jacs.4c18668. Epub 2025 Mar 27.
5
Targeting WDPF domain of Hsp27 achieves a broad spectrum of antiviral.
MedComm (2020). 2025 Feb 26;6(3):e70032. doi: 10.1002/mco2.70032. eCollection 2025 Mar.
7
Lysosomal damage triggers a p38 MAPK-dependent phosphorylation cascade to promote lysophagy via the small heat shock protein HSP27.
Curr Biol. 2024 Dec 16;34(24):5739-5757.e8. doi: 10.1016/j.cub.2024.10.061. Epub 2024 Nov 13.
8
Potential for targeting small heat shock protein modifications.
Trends Pharmacol Sci. 2024 Jul;45(7):583-585. doi: 10.1016/j.tips.2024.04.002. Epub 2024 May 3.
9
Homo-oxidized HSPB1 protects H9c2 cells against oxidative stress via activation of KEAP1/NRF2 signaling pathway.
iScience. 2023 Jul 20;26(8):107443. doi: 10.1016/j.isci.2023.107443. eCollection 2023 Aug 18.
10
Impact of Non-Invasive Physical Plasma on Heat Shock Protein Functionality in Eukaryotic Cells.
Biomedicines. 2023 May 18;11(5):1471. doi: 10.3390/biomedicines11051471.

本文引用的文献

1
Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature.
Biochim Biophys Acta. 2009 Mar;1794(3):375-97. doi: 10.1016/j.bbapap.2008.10.016. Epub 2008 Nov 11.
2
Shark skeletal muscle tropomyosin is a phosphoprotein.
J Muscle Res Cell Motil. 2008;29(2-5):101-7. doi: 10.1007/s10974-008-9143-z. Epub 2008 Sep 2.
3
4
Hsp27 decreases inclusion body formation from mutated GTP-cyclohydrolase I protein.
Biochim Biophys Acta. 2008 Mar;1782(3):169-79. doi: 10.1016/j.bbadis.2007.12.010. Epub 2008 Jan 14.
5
Non-native protein aggregation kinetics.
Biotechnol Bioeng. 2007 Dec 1;98(5):927-38. doi: 10.1002/bit.21627.
6
Hsp27 (HspB1) and alphaB-crystallin (HspB5) as therapeutic targets.
FEBS Lett. 2007 Jul 31;581(19):3665-74. doi: 10.1016/j.febslet.2007.04.033. Epub 2007 Apr 24.
7
Fractionation of oxidized insulin.
Biochem J. 1949;44(1):126-8. doi: 10.1042/bj0440126.
8
Self-association and chaperone activity of Hsp27 are thermally activated.
J Biol Chem. 2006 Mar 24;281(12):8169-74. doi: 10.1074/jbc.M512553200. Epub 2006 Jan 25.
9
Some like it hot: the structure and function of small heat-shock proteins.
Nat Struct Mol Biol. 2005 Oct;12(10):842-6. doi: 10.1038/nsmb993.
10
The small heat shock proteins and their role in human disease.
FEBS J. 2005 Jun;272(11):2613-27. doi: 10.1111/j.1742-4658.2005.04708.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验