Belin Pascal, Le Du Marie Hélène, Fielding Alistair, Lequin Olivier, Jacquet Mickaël, Charbonnier Jean-Baptiste, Lecoq Alain, Thai Robert, Courçon Marie, Masson Cédric, Dugave Christophe, Genet Roger, Pernodet Jean-Luc, Gondry Muriel
Service d'Ingénierie Moléculaire des Protéines, Biologie Structurale et Mécanismes, Commissariat à l'Energie Atomique, Institut de Biologie et Technologies de Saclay, F-91191 Gif-sur-Yvette, France.
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7426-31. doi: 10.1073/pnas.0812191106. Epub 2009 Apr 22.
The gene encoding the cytochrome P450 CYP121 is essential for Mycobacterium tuberculosis. However, the CYP121 catalytic activity remains unknown. Here, we show that the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) binds to CYP121, and is efficiently converted into a single major product in a CYP121 activity assay containing spinach ferredoxin and ferredoxin reductase. NMR spectroscopy analysis of the reaction product shows that CYP121 catalyzes the formation of an intramolecular C-C bond between 2 tyrosyl carbon atoms of cYY resulting in a novel chemical entity. The X-ray structure of cYY-bound CYP121, solved at high resolution (1.4 A), reveals one cYY molecule with full occupancy in the large active site cavity. One cYY tyrosyl approaches the heme and establishes a specific H-bonding network with Ser-237, Gln-385, Arg-386, and 3 water molecules, including the sixth iron ligand. These observations are consistent with low temperature EPR spectra of cYY-bound CYP121 showing a change in the heme environment with the persistence of the sixth heme iron ligand. As the carbon atoms involved in the final C-C coupling are located 5.4 A apart according to the CYP121-cYY complex crystal structure, we propose that C-C coupling is concomitant with substrate tyrosyl movements. This study provides insight into the catalytic activity, mechanism, and biological function of CYP121. Also, it provides clues for rational design of putative CYP121 substrate-based antimycobacterial agents.
编码细胞色素P450 CYP121的基因对结核分枝杆菌至关重要。然而,CYP121的催化活性仍然未知。在此,我们表明环二肽环(L-酪氨酸-L-酪氨酸)(cYY)与CYP121结合,并在含有菠菜铁氧还蛋白和铁氧还蛋白还原酶的CYP121活性测定中有效地转化为单一主要产物。反应产物的核磁共振光谱分析表明,CYP121催化cYY的两个酪氨酸碳原子之间形成分子内C-C键,从而产生一种新型化学实体。以高分辨率(1.4 Å)解析的结合cYY的CYP121的X射线结构显示,在大的活性位点腔中有一个完全占据的cYY分子。一个cYY酪氨酸靠近血红素,并与Ser-237、Gln-385、Arg-386和3个水分子(包括第六个铁配体)建立特定的氢键网络。这些观察结果与结合cYY的CYP121的低温电子顺磁共振光谱一致,该光谱显示血红素环境发生变化,同时第六个血红素铁配体持续存在。根据CYP121-cYY复合物晶体结构,参与最终C-C偶联的碳原子相距5.4 Å,我们提出C-C偶联与底物酪氨酸的移动同时发生。这项研究深入了解了CYP121的催化活性、机制和生物学功能。此外,它为基于推定的CYP121底物的抗分枝杆菌药物的合理设计提供了线索。