Suppr超能文献

AmpC β-内酰胺酶片段抑制剂的对接

Docking for fragment inhibitors of AmpC beta-lactamase.

作者信息

Teotico Denise G, Babaoglu Kerim, Rocklin Gabriel J, Ferreira Rafaela S, Giannetti Anthony M, Shoichet Brian K

机构信息

Department of Pharmaceutical Chemistry, University of California, 1700 4th Street, MC 2550, San Francisco, CA 94158, USA.

出版信息

Proc Natl Acad Sci U S A. 2009 May 5;106(18):7455-60. doi: 10.1073/pnas.0813029106. Epub 2009 Apr 22.

Abstract

Fragment screens for new ligands have had wide success, notwithstanding their constraint to libraries of 1,000-10,000 molecules. Larger libraries would be addressable were molecular docking reliable for fragment screens, but this has not been widely accepted. To investigate docking's ability to prioritize fragments, a library of >137,000 such molecules were docked against the structure of beta-lactamase. Forty-eight fragments highly ranked by docking were acquired and tested; 23 had K(i) values ranging from 0.7 to 9.2 mM. X-ray crystal structures of the enzyme-bound complexes were determined for 8 of the fragments. For 4, the correspondence between the predicted and experimental structures was high (RMSD between 1.2 and 1.4 A), whereas for another 2, the fidelity was lower but retained most key interactions (RMSD 2.4-2.6 A). Two of the 8 fragments adopted very different poses in the active site owing to enzyme conformational changes. The 48% hit rate of the fragment docking compares very favorably with "lead-like" docking and high-throughput screening against the same enzyme. To understand this, we investigated the occurrence of the fragment scaffolds among larger, lead-like molecules. Approximately 1% of commercially available fragments contain these inhibitors whereas only 10(-7)% of lead-like molecules do. This suggests that many more chemotypes and combinations of chemotypes are present among fragments than are available among lead-like molecules, contributing to the higher hit rates. The ability of docking to prioritize these fragments suggests that the technique can be used to exploit the better chemotype coverage that exists at the fragment level.

摘要

尽管针对新配体的片段筛选受限于1000至10000个分子的文库,但仍取得了广泛成功。如果分子对接对于片段筛选可靠,那么更大的文库将是可处理的,但这尚未被广泛接受。为了研究对接对片段进行优先级排序的能力,将一个包含超过137000个此类分子的文库与β-内酰胺酶的结构进行对接。获取并测试了通过对接高度排名的48个片段;其中23个的抑制常数(Ki)值在0.7至9.2 mM之间。测定了8个片段与酶结合复合物的X射线晶体结构。对于其中4个,预测结构与实验结构之间的对应性很高(均方根偏差在1.2至1.4 Å之间),而对于另外2个,保真度较低,但保留了大多数关键相互作用(均方根偏差为2.4至2.6 Å)。由于酶的构象变化,8个片段中的2个在活性位点采取了非常不同的构象。片段对接48%的命中率与针对同一酶的“类先导物”对接和高通量筛选相比非常有利。为了理解这一点,我们研究了片段支架在更大的类先导物分子中的出现情况。大约1%的市售片段包含这些抑制剂,而类先导物分子中只有10^(-7)%含有。这表明片段中存在的化学类型和化学类型组合比类先导物分子中更多,这导致了更高的命中率。对接对这些片段进行优先级排序的能力表明,该技术可用于利用片段水平上存在的更好的化学类型覆盖。

相似文献

1
Docking for fragment inhibitors of AmpC beta-lactamase.AmpC β-内酰胺酶片段抑制剂的对接
Proc Natl Acad Sci U S A. 2009 May 5;106(18):7455-60. doi: 10.1073/pnas.0813029106. Epub 2009 Apr 22.
5
Ultra-large library docking for discovering new chemotypes.超大库对接发现新化学型。
Nature. 2019 Feb;566(7743):224-229. doi: 10.1038/s41586-019-0917-9. Epub 2019 Feb 6.
8
Identifying Artifacts from Large Library Docking.从大型库对接中识别伪影。
J Med Chem. 2024 Sep 26;67(18):16796-16806. doi: 10.1021/acs.jmedchem.4c01632. Epub 2024 Sep 10.

引用本文的文献

6
Class C β-Lactamases: Molecular Characteristics.C 类β-内酰胺酶:分子特征。
Clin Microbiol Rev. 2022 Sep 21;35(3):e0015021. doi: 10.1128/cmr.00150-21. Epub 2022 Apr 18.
8
A practical guide to large-scale docking.大规模对接的实用指南。
Nat Protoc. 2021 Oct;16(10):4799-4832. doi: 10.1038/s41596-021-00597-z. Epub 2021 Sep 24.
10
Property-Unmatched Decoys in Docking Benchmarks.对接基准测试中的属性不匹配诱饵。
J Chem Inf Model. 2021 Feb 22;61(2):699-714. doi: 10.1021/acs.jcim.0c00598. Epub 2021 Jan 25.

本文引用的文献

2
Scaffold topologies. 2. Analysis of chemical databases.支架拓扑结构。2. 化学数据库分析。
J Chem Inf Model. 2008 Jul;48(7):1311-24. doi: 10.1021/ci700342h. Epub 2008 Jul 8.
8
Deconstructing fragment-based inhibitor discovery.解析基于片段的抑制剂发现
Nat Chem Biol. 2006 Dec;2(12):720-3. doi: 10.1038/nchembio831. Epub 2006 Oct 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验