Monterola C, Saloma C
Opt Express. 2001 Jul 16;9(2):72-84. doi: 10.1364/oe.9.000072.
We solve the nonlinear Schrodinger equation with an unsupervised neural network with the optical axis position z and time t as inputs. The network outputs the real and imaginary components of the solution. Unsupervised training aims to minimize a non-negative energy function derived from the equation and the boundary conditions. The trained network is generalizing - a solution value is determined at any (z, t)-combination including those not considered during training. Solutions with normalized mean-squared errors of order 10;-2, are obtained when the average energy is reduced to 10;-2 from order 10;4. The NN method is universal and applies to other complex differential equations.
我们使用一个无监督神经网络来求解非线性薛定谔方程,该网络以光轴位置z和时间t作为输入。网络输出解的实部和虚部。无监督训练旨在最小化从方程和边界条件导出的非负能量函数。经过训练的网络具有泛化能力——在任何(z, t)组合处都能确定解的值,包括那些在训练期间未考虑的组合。当平均能量从10⁴ 降至10⁻² 时,可获得归一化均方误差为10⁻² 量级的解。神经网络方法具有通用性,适用于其他复杂的微分方程。