Peh Guang-Rong, Kantchev Eric Assen B, Zhang Chi, Ying Jackie Y
Institute of Bioengineering and Nanotechnology, 31 Biopolis Way #04-01 The Nanos, Singapore 138669.
Org Biomol Chem. 2009 May 21;7(10):2110-9. doi: 10.1039/b821892g. Epub 2009 Mar 26.
The wide dissemination of catalytic protocols in academic and industrial laboratories is facilitated by the development of catalysts that are not only highly active but also user-friendly, stable to moisture, air and long term storage and easy to prepare on a large scale. Herein we describe a protocol for the Heck-Mizoroki reaction mediated by cyclopalladated N,N-dimethylbenzylamine (dmba) ligated with a N-heterocyclic carbene, 1,3-bis(mesityl)imidazol-2-ylidene (IMes), that fulfils these criteria. The precatalyst can be synthesized on approximately 100 g scale by a tri-component, sequential, one-pot reaction of N,N-dimethylbenzylamine, PdCl2 and IMes.HCl in refluxing acetonitrile in air in the presence of K2CO3. This single component catalyst is stable to air, moisture and long term storage and can be conveniently dispensed as a stock solution in NMP. It mediates the Heck-Mizoroki reaction of a range of aryl- and heteroaryl bromides in reagent grade NMP at the 0.1-2 mol% range without the need for rigorous anhydrous techniques or a glovebox, and is active even in air. The catalyst is capable of achieving very high levels of catalytic activity (TON of up to 5.22 x 10(5)) for the coupling of a deactivated arylbromide, p-bromoanisole, with tBu acrylate as a benchmark substrate pair. A wide range of aryl bromides, iodides and, for the first time with a NHC-Pd catalyst, a triflate was coupled with diverse acrylate derivatives (nitrile, tert-butyl ester and amides) and styrene derivatives. The use of excess (>2 equiv.) of the aryl bromide and tert-butyl acrylate leads to mixture of tert-butyl beta,beta-diarylacrylate and tert-butyl cinnamate derivatives depending on the substitution pattern of the aryl bromide. Electron rich m- and p-substituted arylbromides give the diarylated products exclusively, whereas electron-poor aryl bromides give predominantly mono-arylated products. For o-substituted aryl bromides, no doubly arylated products could be obtained under any conditions. Overall, the active catalyst (IMes-Pd) shows higher activity with electron-rich aryl halides, a marked difference compared with the more commonly used phosphane-Pd or non-ligated Pd catalysts.
开发出不仅具有高活性,而且使用方便、对湿气、空气稳定且易于大规模制备、便于长期储存的催化剂,有助于催化反应方案在学术和工业实验室中广泛传播。在此,我们描述了一种由环钯化的N,N-二甲基苄胺(dmba)与N-杂环卡宾1,3-双(均三甲苯基)咪唑-2-亚基(IMes)配位介导的Heck-Mizoroki反应方案,该方案满足这些标准。前催化剂可通过N,N-二甲基苄胺、PdCl₂和IMes·HCl在碳酸钾存在下于空气中回流的乙腈中进行三组分、连续、一锅法反应,以约100 g规模合成。这种单组分催化剂对空气、湿气和长期储存稳定,并且可以方便地配制成NMP中的储备溶液。它在试剂级NMP中以0.1 - 2 mol%的用量介导一系列芳基和杂芳基溴化物的Heck-Mizoroki反应,无需严格的无水技术或手套箱环境,甚至在空气中也具有活性。以钝化的芳基溴化物对溴苯甲醚与丙烯酸叔丁酯作为基准底物对进行偶联反应时,该催化剂能够实现非常高的催化活性(高达5.22×10⁵的TON)。多种芳基溴化物、碘化物,并且首次使用NHC-Pd催化剂时,三氟甲磺酸盐与多种丙烯酸酯衍生物(腈、叔丁酯和酰胺)以及苯乙烯衍生物进行了偶联反应。使用过量(>2当量)的芳基溴化物和丙烯酸叔丁酯会根据芳基溴化物的取代模式生成β,β-二芳基丙烯酸叔丁酯和肉桂酸叔丁酯衍生物的混合物。富电子的间位和对位取代的芳基溴化物仅生成二芳基化产物,而贫电子的芳基溴化物主要生成单芳基化产物。对于邻位取代的芳基溴化物,在任何条件下都无法获得双芳基化产物。总体而言,活性催化剂(IMes-Pd)对富电子芳基卤化物表现出更高的活性,这与更常用的膦-Pd或未配位的Pd催化剂相比有显著差异。