Wexler C, Firlej L, Kuchta B, Roth M W
University of Missouri, Department of Physics and Astronomy, Columbia, Missouri 65211, USA.
Langmuir. 2009 Jun 16;25(12):6596-8. doi: 10.1021/la900808f.
We present the first large-scale molecular dynamics simulations of hexane on graphite that completely reproduce all experimental features of the melting transition. The canonical ensemble simulations required and used the most realistic model of the system: (i) a fully atomistic representation of hexane; (ii) an explicit site-by-site interaction with carbon atoms in graphite; (iii) the CHARMM force field with carefully chosen adjustable parameters of nonbonded interaction, and (iv) numerous >or=100 ns runs, requiring a total computation time of ca. 10 CPU years. The exhaustive studies have allowed us to determine the mechanism of the transition: proliferation of small domains through molecular reorientation within lamellae and without perturbation of the overall adsorbed film structure. At temperatures greater than that of melting, the system exhibits dynamically reorienting domains whose orientations reflect the graphite substrate's symmetry and whose size decrease with increasing temperature.
我们展示了首个关于己烷在石墨上的大规模分子动力学模拟,该模拟完全重现了熔化转变的所有实验特征。正则系综模拟需要并使用了该系统最真实的模型:(i) 己烷的全原子表示;(ii) 与石墨中碳原子的逐个位点的明确相互作用;(iii) 具有精心选择的非键相互作用可调参数的CHARMM力场,以及(iv) 进行了大量≥100 ns的运行,总共需要约10个CPU年的计算时间。详尽的研究使我们能够确定转变的机制:通过层内分子重新定向而不干扰整体吸附膜结构,小区域不断增殖。在高于熔化温度时,系统呈现出动态重新定向的区域,其取向反映了石墨基底的对称性,且其尺寸随温度升高而减小。