Suppr超能文献

用于多散射介质中时间反转的广义散粒噪声模型,允许任意输入和加窗。

Generalized shot noise model for time-reversal in multiple-scattering media allowing for arbitrary inputs and windowing.

作者信息

Haworth Kevin J, Fowlkes J Brian, Carson Paul L, Kripfgans Oliver D

机构信息

Department of Radiology and the Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, USA.

出版信息

J Acoust Soc Am. 2009 May;125(5):3129-40. doi: 10.1121/1.3106133.

Abstract

A theoretical shot noise model to describe the output of a time-reversal experiment in a multiple-scattering medium is developed. This (non-wave equation based) model describes the following process. An arbitrary waveform is transmitted through a high-order multiple-scattering environment and recorded. The recorded signal is arbitrarily windowed and then time-reversed. The processed signal is retransmitted into the environment and the resulting signal recorded. The temporal and spatial signal and noise of this process is predicted statistically. It is found that the time when the noise is largest depends on the arbitrary windowing and this noise peak can occur at times outside the main lobe. To determine further trends, a common set of parameters is applied to the general result. It is seen that as the duration of the input function increases, the signal-to-noise ratio (SNR) decreases (independent of signal bandwidth). It is also seen that longer persisting impulse responses result in increased main lobe amplitudes and SNR. Assumptions underpinning the generalized shot noise model are compared to an experimental realization of a multiple-scattering medium (a time-reversal chaotic cavity). Results from the model are compared to random number numerical simulation.

摘要

开发了一种理论散粒噪声模型,用于描述多散射介质中时间反转实验的输出。这个(基于非波动方程的)模型描述了以下过程。任意波形通过高阶多散射环境传输并记录。记录的信号被任意加窗,然后进行时间反转。处理后的信号被重新传输到环境中,并记录产生的信号。对该过程的时间和空间信号及噪声进行统计预测。发现噪声最大时取决于任意加窗,并且这个噪声峰值可能出现在主瓣之外的时间。为了确定进一步的趋势,将一组通用参数应用于一般结果。可以看出,随着输入函数持续时间的增加,信噪比(SNR)降低(与信号带宽无关)。还可以看出,持续时间更长的脉冲响应会导致主瓣幅度和信噪比增加。将广义散粒噪声模型的假设与多散射介质(时间反转混沌腔)的实验实现进行了比较。将模型结果与随机数数值模拟进行了比较。

相似文献

2
Real time noise and wavelength correlations in octave-spanning supercontinuum generation.
Opt Express. 2013 Jul 29;21(15):18452-60. doi: 10.1364/OE.21.018452.
3
Power spectrum model of visual masking: simulations and empirical data.
J Opt Soc Am A Opt Image Sci Vis. 2013 Jun 1;30(6):1119-35. doi: 10.1364/JOSAA.30.001119.
4
Time-reversal multiple signal classification in case of noise: a phase-coherent approach.
J Acoust Soc Am. 2011 Oct;130(4):2024-34. doi: 10.1121/1.3626526.
6
Time reversal of noise sources in a reverberation room.
J Acoust Soc Am. 2005 May;117(5):2866-72. doi: 10.1121/1.1886385.
7
Comparison between experimental and 2-D numerical studies of multiple scattering in Inconel600 by means of array probes.
Ultrasonics. 2014 Jan;54(1):358-67. doi: 10.1016/j.ultras.2013.06.012. Epub 2013 Jul 1.
8
Weak-periodic stochastic resonance in a parallel array of static nonlinearities.
PLoS One. 2013;8(3):e58507. doi: 10.1371/journal.pone.0058507. Epub 2013 Mar 11.
9
Signal-to-noise ratio and signal-to-noise efficiency in SMASH imaging.
Magn Reson Med. 1999 May;41(5):1009-22. doi: 10.1002/(sici)1522-2594(199905)41:5<1009::aid-mrm21>3.0.co;2-4.
10
Ultrasound time-reversal MUSIC imaging with diffraction and attenuation compensation.
IEEE Trans Ultrason Ferroelectr Freq Control. 2012 Oct;59(10):2186-200. doi: 10.1109/TUFFC.2012.2445.

本文引用的文献

1
Temperature-dependent diffusing acoustic wave spectroscopy with resonant scatterers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2008 Mar;77(3 Pt 2):036602. doi: 10.1103/PhysRevE.77.036602. Epub 2008 Mar 5.
2
Focusing beyond the diffraction limit with far-field time reversal.
Science. 2007 Feb 23;315(5815):1120-2. doi: 10.1126/science.1134824.
4
Building three-dimensional images using a time-reversal chaotic cavity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2005 Sep;52(9):1489-97. doi: 10.1109/tuffc.2005.1516021.
6
Time reversal of noise sources in a reverberation room.
J Acoust Soc Am. 2005 May;117(5):2866-72. doi: 10.1121/1.1886385.
7
Relation between time reversal focusing and coherent backscattering in multiple scattering media: a diagrammatic approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Oct;70(4 Pt 2):046601. doi: 10.1103/PhysRevE.70.046601. Epub 2004 Oct 5.
8
Green function retrieval and time reversal in a disordered world.
Phys Rev Lett. 2003 Dec 12;91(24):243904. doi: 10.1103/PhysRevLett.91.243904.
9
Time-reversal acoustics in biomedical engineering.
Annu Rev Biomed Eng. 2003;5:465-97. doi: 10.1146/annurev.bioeng.5.040202.121630.
10
Taking advantage of multiple scattering to communicate with time-reversal antennas.
Phys Rev Lett. 2003 Jan 10;90(1):014301. doi: 10.1103/PhysRevLett.90.014301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验