Suppr超能文献

Studies of performance of antiscatter grids in digital radiography: effect on signal-to-noise ratio.

作者信息

Chan H P, Lam K L, Wu Y Z

机构信息

Kurt Rossmann Laboratories for Radiologic Image Research, Department of Radiology, University of Chicago, Illinois 60637.

出版信息

Med Phys. 1990 Jul-Aug;17(4):655-64. doi: 10.1118/1.596496.

Abstract

We developed a theoretical model which describes the improvement of signal-to-noise ratio (SNR) by a grid in digital radiography. The model takes into account the effects of spatial variations in the scatter-to-primary ratio and in the large-area contrast over an image with structured background on quantum noise, and the effects of noise in the imaging system such as electronic noise and digitization noise. Based on the theoretical model, we analyzed the effects of these factors on the SNR when a grid is employed. We performed experimental measurements to evaluate the improvement in the SNR by a grid when quantum noise is the dominant noise source. It was found that the measured SNR improvement factor due to quantum noise agreed closely with that determined from the measured transmission values of a grid, as predicted from our theoretical model. In order to evaluate the relative performance of grids with various geometric design parameters for digital radiographic systems, we employed Monte Carlo calculations and determined the transmission values of a number of grids under various scatter conditions. The calculated SNR improvement factor, due to quantum noise, correlated well with the measured improvement of the SNR by the grids. Our model predicts that the SNR improvement factor depends strongly on the local contrast ratio and also on the scatter-to-primary ratio. The SNR improvement factor is higher in the underpenetrated regions than in the well-penetrated regions of an image.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验