Saint-Georges Françoise, Garçon Guillaume, Escande Fabienne, Abbas Imane, Verdin Anthony, Gosset Pierre, Mulliez Philippe, Shirali Pirouz
Service de Pneumologie, Hôpital Saint-Philibert, Groupement Hospitalier de l'Institut Catholique-Faculté Libre de Médecine de Lille, Rue du Grand But, BP 249, 59462 Lomme Cedex, France.
Toxicol Lett. 2009 Jun 22;187(3):172-9. doi: 10.1016/j.toxlet.2009.02.016. Epub 2009 Mar 9.
Lung cancer still remains the most frequent type of cancer all around the world and the leading cause of cancer-related death. Even if tobacco use takes a major part in etiology of lung cancer, other explanations like genetic and lifestyle factors, and occupational and/or environmental exposure to carcinogens have to be considered. Hence, in this study, we were interested in the ability of in vitro short-term exposure to air pollution Particulate Matter (PM) to induce genomic alterations in Dunkerque City's PM(2.5)-exposed human epithelial lung cells (L132). The occurrence of MicroSatellite (MS) alterations in 3p multiple critical regions (i.e. 3p14.1, 3p14.2, 3p14.3, 3p21.1, 3p21.31, and 3p21.32) identified as showing frequent allelic losses in benign or malignant lung diseases, was also studied in Dunkerque City's PM(2.5)-exposed L132 cells. Negative (i.e. TiO(2); desorbed PM, dPM), and positive (i.e. benzo[a]pyrene, B[a]P) controls were also included in the experimental design. Loss Of Heterozygosity (LOH) and/or MicroSatellite Instability (MSI) were reported 72h after L132 cell exposure to dPM (i.e. 61.71microg dPM/mL or 12.34microgdPM/cm(2)), PM (i.e. 75.36microgPM/mL or 15.07microgPM/cm(2)), or B[a]P (i.e. 1microM). In agreement with the current literature, such MS alterations might rely on the ability of dPM, PM or B[a]P to induce oxidative stress conditions, thereby altering DNA polymerase enzymes, enhancing DNA recombination rates, and inhibiting DNA repair enzymes. Hence, we concluded that the occurrence of dramatic MS alterations in 3p chromosome multiple critical regions could be a crucial underlying mechanism, which proceeded the lung toxicity in air pollution PM-exposed target L132 cells.
肺癌仍然是全球最常见的癌症类型以及癌症相关死亡的主要原因。尽管吸烟在肺癌病因中占主要部分,但其他因素如遗传和生活方式因素,以及职业和/或环境致癌物暴露也必须予以考虑。因此,在本研究中,我们关注体外短期暴露于空气污染颗粒物(PM)是否能在敦刻尔克市暴露于PM(2.5)的人肺上皮细胞(L132)中诱导基因组改变。我们还研究了在3p多个关键区域(即3p14.1、3p14.2、3p14.3、3p21.1、3p21.31和3p21.32)中微卫星(MS)改变的发生情况,这些区域在良性或恶性肺部疾病中常出现等位基因缺失。实验设计中还包括阴性(即TiO(2);解吸的PM,dPM)和阳性(即苯并[a]芘,B[a]P)对照。在L132细胞暴露于dPM(即61.71μg dPM/mL或12.34μg dPM/cm(2))、PM(即75.36μg PM/mL或15.07μg PM/cm(2))或B[a]P(即1μM)72小时后,报告了杂合性缺失(LOH)和/或微卫星不稳定性(MSI)。与当前文献一致,这种MS改变可能依赖于dPM、PM或B[a]P诱导氧化应激条件的能力,从而改变DNA聚合酶,提高DNA重组率,并抑制DNA修复酶。因此,我们得出结论,3p染色体多个关键区域中显著的MS改变的发生可能是一个关键的潜在机制,它先于空气污染PM暴露的靶L132细胞中的肺毒性。