Suppr超能文献

住院患者住院时间:有限混合模型分析。

Inpatient length of stay: a finite mixture modeling analysis.

机构信息

Department of Statistics, North-Eastern Hill University, Umshing, Mawkynroh, Shillong, 793022, Meghalaya, India.

出版信息

Eur J Health Econ. 2010 Apr;11(2):119-26. doi: 10.1007/s10198-009-0153-6. Epub 2009 May 12.

Abstract

Length of stay (LOS) in hospital for inpatient treatment is a measure of crucial recovery time. Using nationwide data on inpatient healthcare in India, a three-component finite mixture negative binomial model was found to provide a reasonable fit to the heterogeneous LOS distribution. Associated risk factors for short-stay, medium-stay and long-stay subgroups were identified from the respective negative binomial components. In addition, significant heterogeneities within each group were also found.

摘要

住院患者住院时间(LOS)是衡量康复时间的关键指标。本研究利用印度全国范围内的住院医疗数据,发现三组分有限混合负二项式模型能够很好地拟合 LOS 的异质分布。从相应的负二项式分量中确定了短住、中住和长住亚组的相关风险因素。此外,还发现每组内存在显著的异质性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验