Suppr超能文献

菌紫质是一种强大的光驱动质子泵。

Bacteriorhodopsin is a powerful light-driven proton pump.

出版信息

Biophys J. 1987 May;51(5):839-41. doi: 10.1016/S0006-3495(87)83411-2.

Abstract

The activity of bacteriorhodopsin was investigated with Halobacterium halobium cell envelopes, which lack cytoplasmic constituents. It was found that the physiological concentration of magnesium ion greatly enhanced the light-induced pH change; under optimal conditions, the pH change of the external medium was as large as 3.5 pH units, even though the volume fraction of the envelope vesicles was as low as 0.01. This pH change is about three times larger than the largest change reported thus far. This same effect was observed with transition metal ions, but not with other alkaline divalent cations. That is, divalent cations that formed hydroxides below pH 10 were effective in enhancing the light-induced pH change. This result suggests that some divalent cations acted as buffers against a large increase in the internal pH, and that the internal pH was an important factor in determining the activity of bacteriorhodopsin. It was also shown that a high level of the proton-pump activity was maintained in a wide range of external pHs, at least between 4.5 and 9.4.

摘要

用缺乏细胞质成分的嗜盐菌细胞包膜研究了菌紫质的活性。结果发现生理浓度的镁离子大大增强了光诱导的 pH 变化;在最佳条件下,外部介质的 pH 变化高达 3.5 pH 单位,尽管包膜囊泡的体积分数低至 0.01。这个 pH 变化大约是迄今为止报道的最大变化的三倍。同样的效果也在过渡金属离子中观察到,但在其他碱性二价阳离子中则没有观察到。也就是说,在 pH 低于 10 时形成氢氧化物的二价阳离子能够有效地增强光诱导的 pH 变化。这一结果表明,某些二价阳离子起到了缓冲内部 pH 大幅增加的作用,而内部 pH 是决定菌紫质活性的一个重要因素。还表明,在广泛的外部 pH 值范围内,至少在 4.5 到 9.4 之间,质子泵的活性保持在较高水平。

相似文献

1
Bacteriorhodopsin is a powerful light-driven proton pump.
Biophys J. 1987 May;51(5):839-41. doi: 10.1016/S0006-3495(87)83411-2.
2
Structure and function of bacteriorhodopsin.
Adv Biophys. 1988;24:123-75. doi: 10.1016/0065-227x(88)90006-8.
3
Light-driven primary sodium ion transport in Halobacterium halobium membranes.
J Supramol Struct. 1980;13(1):83-92. doi: 10.1002/jss.400130108.
5
Electrooptical studies on proton-binding and -release of bacteriorhodopsin.
Eur Biophys J. 1990;18(1):63-9. doi: 10.1007/BF00185421.
6
Light-induced membrane potential and pH gradient in Halobacterium halobium envelope vesicles.
Biochemistry. 1976 May 18;15(10):2136-43. doi: 10.1021/bi00655a017.
7
Transient proton inflows during illumination of anaerobic Halobacterium halobium cells.
Arch Biochem Biophys. 1985 Sep;241(2):616-27. doi: 10.1016/0003-9861(85)90588-0.
8
Potassium uniport and ATP synthesis in Halobacterium halobium.
Eur J Biochem. 1978 Aug 15;89(1):169-79. doi: 10.1111/j.1432-1033.1978.tb20909.x.
10
The photochemical cycle of bacteriorhodopsin.
Fed Proc. 1977 May;36(6):1805-9.

引用本文的文献

1
Wiring proton gradients for energy conversion.
Chem Sci. 2024 Nov 8;15(47):19745-19751. doi: 10.1039/d4sc04833d. eCollection 2024 Dec 4.
2
Thermodynamics and kinetics of protonated merocyanine photoacids in water.
Chem Sci. 2020 Jul 31;11(32):8457-8468. doi: 10.1039/d0sc03152f.
3
pH-Controlled Coacervate-Membrane Interactions within Liposomes.
ACS Nano. 2020 Apr 28;14(4):4487-4498. doi: 10.1021/acsnano.9b10167. Epub 2020 Apr 7.
6
Properties of the electrogenic activity of bacteriorhodopsin.
Eur Biophys J. 2013 Apr;42(4):257-65. doi: 10.1007/s00249-012-0870-0. Epub 2012 Oct 28.

本文引用的文献

2
The quantum efficiency of proton pumping by the purple membrane of Halobacterium halobium.
Biophys J. 1980 May;30(2):231-42. doi: 10.1016/S0006-3495(80)85091-0.
5
Structure of the cell envelope of Halobacterium halobium.
J Cell Biol. 1976 Oct;71(1):1-22. doi: 10.1083/jcb.71.1.1.
7
Light-dependent proton and rubidium translocation in membrane vesicles from Halobacterium halobium.
Biochem Biophys Res Commun. 1975 Jan 2;64(3):1054-61. doi: 10.1016/0006-291x(75)90154-0.
9
Bacteriorhodopsin and the purple membrane of halobacteria.
Biochim Biophys Acta. 1979 Mar 14;505(3-4):215-78. doi: 10.1016/0304-4173(79)90006-5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验