Suppr超能文献

嗜盐菌膜中光驱动的初级钠离子运输

Light-driven primary sodium ion transport in Halobacterium halobium membranes.

作者信息

Lanyi J K

出版信息

J Supramol Struct. 1980;13(1):83-92. doi: 10.1002/jss.400130108.

Abstract

Light-induced sodium extrusion from H halobium cell envelope vesicles proceeds largely through an uncoupler-sensitive pathway involving bacteriorhodopsin and a proton/sodium antiporter. Vesicles from bacteriorhodopsin-negative strains also extrude sodium ions during illumination, but this transport is not sensitive to uncouplers and has been proposed to involve a light-energized primary sodium pump. Proton uptake in such vesicles is passive, and under steady-state illumination the large electrical potential (negative inside) is just balanced by a pH difference (acid inside), so that the proton-motive force is near zero. Action spectra indicated that this effect of illumination is attributable to a pigment absorbing near 585 nm (cf 568 for bacteriorhodopsin). Bleaching of the vesicles by prolonged illumination with hydroxylamine results in inactivation of the transport; retinal addition causes partial return of the activity. Retinal addition also causes the appearance of an absorption peak at 588 nm, while the absorption of free retinal decreases. The 588 nm pigment is present in very small quantities (0.13 nmole/mg protein), and behaves differently from bacteriorhodopsin in a number of respects. Vesicles can be prepared from bacteriorhodopsin-containing H halobium strains in which primary transport for both protons and sodium can be observed. Both pumps appear to cause the outward transport of the cations. The observations indicated the existence of a second retinal protein, addition to bacteriorhodopsin, in H halobium, which is associated with primary sodium translocation. The initial proton uptake normally observed during illumination of whole H halobium cells may therefore be a passive flux in response to the primary sodium extrusion.

摘要

光诱导嗜盐菌细胞包膜囊泡排出钠主要通过一条对解偶联剂敏感的途径,该途径涉及细菌视紫红质和质子/钠反向转运体。来自细菌视紫红质阴性菌株的囊泡在光照期间也会排出钠离子,但这种转运对解偶联剂不敏感,有人提出它涉及一种光驱动的初级钠泵。这种囊泡中的质子摄取是被动的,在稳态光照下,大的电势(内部为负)正好被pH差异(内部为酸性)平衡,因此质子动力接近于零。作用光谱表明,这种光照效应归因于一种在585nm附近吸收的色素(细菌视紫红质为568nm)。用羟胺长时间光照使囊泡漂白会导致转运失活;添加视黄醛会使活性部分恢复。添加视黄醛还会导致在588nm处出现一个吸收峰,而游离视黄醛的吸收减少。588nm色素的含量非常少(0.13nmol/mg蛋白质),并且在许多方面与细菌视紫红质的行为不同。可以从含有细菌视紫红质的嗜盐菌菌株中制备囊泡,在其中可以观察到质子和钠的初级转运。两种泵似乎都导致阳离子向外转运。这些观察结果表明,除了细菌视紫红质外,嗜盐菌中还存在第二种视黄醛蛋白,它与钠的初级转运有关。因此,在整个嗜盐菌细胞光照期间通常观察到的初始质子摄取可能是对初级钠排出的被动通量。

相似文献

1
Light-driven primary sodium ion transport in Halobacterium halobium membranes.
J Supramol Struct. 1980;13(1):83-92. doi: 10.1002/jss.400130108.
4
Na+ transport via Na+/H+ antiport in Halobacterium halobium envelope vesicles.
FEBS Lett. 1980 Aug 11;117(1):354-8. doi: 10.1016/0014-5793(80)80979-3.
6
Halorhodopsin is a light-driven chloride pump.
J Biol Chem. 1982 Sep 10;257(17):10306-13.
10
Bacteriorhodopsin: a light-driven proton pump in Halobacterium Halobium.
Biophys J. 1975 Sep;15(9):955-62. doi: 10.1016/S0006-3495(75)85875-9.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验