Suppr超能文献

藻胆体能量传递的动力学模型。

A kinetic model for the energy transfer in phycobilisomes.

出版信息

Biophys J. 1987 Nov;52(5):673-83. doi: 10.1016/S0006-3495(87)83262-9.

Abstract

A kinetic model for the energy transfer in phycobilisome (PBS) rods of Synechococcus 6301 is presented, based on a set of experimental parameters from picosecond studies. It is shown that the enormous complexity of the kinetic system formed by 400-500 chromophores can be greatly simplified by using symmetry arguments. According to the model the transfer along the phycocyanin rods has to be taken into account in both directions, i.e., back and forth along the rods. The corresponding forward rate constants for single step energy transfer between trimeric disks are predicted to be 100-300 ns(-1). The model that best fits the experimental data is an asymmetric random walk along the rods with overall exciton kinetics that is essentially trap-limited. The transfer process from the sensitizing to the fluorescing C-PC phycocyanin chromophores (tau approximately 10 ps) is localized in the hexamers. The transfer from the innermost phycocyanin trimer to the core is calculated to be in the range 36-44 ns(-1). These parameters lead to calculated overall rod-core transfer times of 102 and 124 ps for rods containing three and four hexamers, respectively. The model calculations confirm the previously suggested hypothesis that the energy transfer from the rods to the core is essentially described by one dominant exponential function. Extension of the model to heterogeneous PBS rods, i.e., PBS containing also phycoerythrin, is straightforward.

摘要

基于一组皮秒研究的实验参数,提出了一种用于聚光天线色素蛋白复合物(PBS)棒的能量转移的动力学模型,该模型来自于集胞藻 6301。结果表明,通过使用对称论证,可以大大简化由 400-500 个发色团组成的动力学系统的巨大复杂性。根据该模型,藻蓝蛋白棒的转移必须在两个方向上进行,即沿棒来回进行。预测单个三聚体盘之间能量转移的正向速率常数为 100-300 ns(-1)。与实验数据拟合得最好的模型是沿棒的非对称随机行走,整体激子动力学基本上是受陷阱限制的。从敏化到发荧光 C-PC 藻蓝蛋白发色团的转移过程(约 10 ps)局部化在六聚体中。从最里面的藻蓝蛋白三聚体到核心的转移计算范围在 36-44 ns(-1)之间。这些参数导致包含三个和四个六聚体的棒的总棒芯转移时间分别为 102 和 124 ps。模型计算证实了先前提出的假设,即从棒到核心的能量转移基本上由一个主导的指数函数描述。将该模型扩展到异质 PBS 棒,即包含藻红蛋白的 PBS 棒,是直接的。

相似文献

1
A kinetic model for the energy transfer in phycobilisomes.
Biophys J. 1987 Nov;52(5):673-83. doi: 10.1016/S0006-3495(87)83262-9.
4
Linker proteins enable ultrafast excitation energy transfer in the phycobilisome antenna system of Thermosynechococcus vulcanus.
Photochem Photobiol Sci. 2016 Jan;15(1):31-44. doi: 10.1039/c5pp00285k. Epub 2015 Nov 5.
5
Spectroscopic study of the light-harvesting protein C-phycocyanin associated with colorless linker peptides.
Photochem Photobiol. 2001 May;73(5):556-63. doi: 10.1562/0031-8655(2001)073<0556:ssotlh>2.0.co;2.
6
Excitation energy transfer and vibronic coherence in intact phycobilisomes.
Nat Chem. 2022 Nov;14(11):1286-1294. doi: 10.1038/s41557-022-01026-8. Epub 2022 Sep 19.
8
A functional compartmental model of the Synechocystis PCC 6803 phycobilisome.
Photosynth Res. 2018 Mar;135(1-3):87-102. doi: 10.1007/s11120-017-0424-5. Epub 2017 Jul 18.
10
Role of the Colorless Polypeptides in Phycobilisome Assembly in Nostoc sp.
Plant Physiol. 1983 Feb;71(2):379-87. doi: 10.1104/pp.71.2.379.

引用本文的文献

1
Effects of Lead and Zinc Exposure on Uptake and Exudation Levels, Chlorophyll-a, and Phycobiliproteins in .
Int J Environ Res Public Health. 2023 Feb 5;20(4):2821. doi: 10.3390/ijerph20042821.
2
Estimation of the relative contributions to the electronic energy transfer rates based on Förster theory: The case of C-phycocyanin chromophores.
Biophys Physicobiol. 2021 Jul 30;18:196-214. doi: 10.2142/biophysico.bppb-v18.021. eCollection 2021.
3
Time-resolved fluorescence study of excitation energy transfer in the cyanobacterium Anabaena PCC 7120.
Photosynth Res. 2020 May;144(2):247-259. doi: 10.1007/s11120-020-00719-w. Epub 2020 Feb 19.
4
A functional compartmental model of the Synechocystis PCC 6803 phycobilisome.
Photosynth Res. 2018 Mar;135(1-3):87-102. doi: 10.1007/s11120-017-0424-5. Epub 2017 Jul 18.
5
Investigation of phycobilisome subunit interaction interfaces by coupled cross-linking and mass spectrometry.
J Biol Chem. 2014 Nov 28;289(48):33084-97. doi: 10.1074/jbc.M114.595942. Epub 2014 Oct 8.
6
Regulation of excitation energy transfer in organisms containing phycobilins.
Photosynth Res. 1989 Apr;20(1):1-34. doi: 10.1007/BF00028620.
9
Crystal structure of R-phycocyanin and possible energy transfer pathways in the phycobilisome.
Biophys J. 2001 Aug;81(2):1171-9. doi: 10.1016/S0006-3495(01)75774-8.

本文引用的文献

2
Disk-to-Disk Transfer as the Rate-Limiting Step for Energy Flow in Phycobilisomes.
Science. 1985 Jan 25;227(4685):419-23. doi: 10.1126/science.227.4685.419.
3
Kinetics of energy flow in the phycobilisome core.
Science. 1985 Nov 29;230(4729):1051-3. doi: 10.1126/science.230.4729.1051.
4
Phycobilisomes: structure and dynamics.
Annu Rev Microbiol. 1982;36:173-98. doi: 10.1146/annurev.mi.36.100182.001133.
5
The structure of a "simple" phycobilisome.
Ann Microbiol (Paris). 1983 Jul-Aug;134B(1):159-80. doi: 10.1016/s0769-2609(83)80103-3.
6
Fluorescence decay kinetics of chlorophyll in photosynthetic membranes.
J Cell Biochem. 1983;23(1-4):131-58. doi: 10.1002/jcb.240230112.
8
Number and distribution of chromophore types in native phycobiliproteins.
Photochem Photobiol. 1970 Aug;12(2):99-117. doi: 10.1111/j.1751-1097.1970.tb06044.x.
10
Phycobilisomes in blue-green algae.
J Bacteriol. 1974 Feb;117(2):866-81. doi: 10.1128/jb.117.2.866-881.1974.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验